NOT MEASUREMENT
SENSITIVE

MIL-STD-2407

28 JUNE 1996
SUPERSEDING

MIL-STD-600006
27 APRIL 1996

DEPARTMENT OF DEFENSE

INTERFACE STANDARD FOR
VECTOR PRODUCT FORMAT

AMSC N/A AREA MCGT

RISTRIBUTION STATEMENT A. Approved for public release;

distribution is unlimited.

MIL-STD-2407

FOREWORD

1. This interface standard is approved for use by all
Departments and Agencies of the Department of Defense.

2. Beneficial comments (recommendations, additions, deletions)
and any pertinent data which may be of use in improving this
document should be addressed to: DMA (ATISI), MS A-10, 8613 Lee
Highway, Fairfax, Virginia 22031-2137, by using the
Standardization Document Proposal (DD Form 1426) appearing at the
end of this document or by letter.

ii

o
. e e
N =

NN NDRNON
PR
[N

NN
=W

w

[- N O SO Y
e e e e
d W N =

.

NNNNNONNOPODPDODNONNDODNODNDNNRPRE R PR PP

. . . e
NN NNONNONNOONNONNDOMNONNNNNNNDNODNDNNNDN
« e e e « s e « e e s e
L) L[] . *
AN s W

WWWNNNNNN KRR

.

.
B W N =

(S2NT NG NC RE RS NG NG I, S N IS IS, NS S IS S N S, IS, N, IS S

MIL-STD-2407

PARAGRAPH

SCOPE

Scope

Applicability

APPLICABLE DOCUMENTS

General

Government documents

Specifications, standards, and handbooks
Other Government documents, drawings, and

publications.
Non-Government publications
Order of precedence

DEFINITIONS

GENERAL REQUIREMENTS

General

VPF characteristics

Relationship between VPF and specific products
VPF hierarchy

DETAILED REQUIREMENTS
General
VPF data model
Data organization
Directory
Tables
VPF table components
Indexes
Narrative tables
Attribute tables
VPF data model components
Primitives
Nodes
Edges
Faces
Text
Feature classes
Feature definition
Feature table joins
Feature class types
Constructing feature classes
Coverage
VPF topology
Value description tables

oW

[N

iii

g S = =

wroN

16
16
16
17
18

20
20
20
20
20
22
22
23
24
24
25
27
28
29
29
30
30
30
31
31
32
35
36
42

MIL-STD-2407

é

. .

.bwwwwwwuwwwwwwwwwwwwwwwwwwwwuwwwwmmmwmmr\)r\)r\)

.

mmmmwmmmmmmu—nmuwwmwmmmmwmmmwmmmwmmmmmmmmmmmmmmmm

N NN N

.

WWwwhhRoNoNDPDRNDDDNDND

WO OO OB LB WWWWRNNNNNNDNDNREREE

-

G B B S s S W W

w M

AW b W

> W N -2 N -

[N

[NSI

SHW

Tiled coverages
Cross-tile keys
Library
Tile reference coverage
Library attributes
Library coordinate system
Library reference coverage
Data quality reference coverage
Names reference coverage
Database
Data quality
Types of data gquality information
Data quality encoding
Implementation
General implementation information i}
Table definitions
Reserved table names and extensions
Primitives
Node primitives
Edge primitive
Face primitive
Text primitive
Minimum bounding rectangle table
Feature class
Feature tables
Feature join tables
Feature-to-primitive relations on tiled coverages
Coverage
Coverage relationships
Feature class schema table
Value description table
Library
Library header table
Geographic reference table
Coverage attribute table
Tile reference coverage

Ny U s W N

.1 Tile attributes

Registration point table
Diagnostic point table
Database
Library attribute table
Database header table
Data quality
Narrative table
Names reference coverage
VPF encapsulation

iv

42
45
46
47
47
47
48
48
48
48
49
49
49
50
50
50
53
55
57
59
61
63
64
65
65
67
68
68
68
68
70
71
72
73
74
76
76
77
77
78
78
79
80
81
82
82

MIL-STD-2407

PARAGRAPH PAGE
5.4.1 Table definition 82
5.4.1.1 Header 83
5.4.1.2 Record list 86
5.4.1.3 Variable-length index file 86
5.4.2 Spatial index files 87
5.4.3 Thematic index files 88
5.4.3.1 Feature index 92
5.4.4 Allowable field types 94
5.4.5 Naming conventions 95
5.4.6 Triplet id field type 96
5.5 Data syntax requirements 98
5.5.1 Integer numbers 98
5.5.2 Real numbers 98
5.5.3 Date and time syntax 100
5.5.4 Text syntax 101
5.5.5 Coordinate syntax - 106
5.5.6 Coordinate strings 106
6. NOTES 106
6.1 Intended use 106
6.2 Acquisition requirements 106
6.3 Supersession 106
6.4 Subject term 106
6.5 Changes from previous issues 106

E

W oo U b Wk

30
31

32
33
34
35
36

37

38

39

MIL-STD-2407

Relationship between VPF and specific products

Vector product format structure

Byte stream

VPF structural levels

Geometric and cartographic primitives

Primitive directory contents

Feature class structural scheme

Coverage contents

Levels of topology in VPF coverages

Level 0 topology

Level 1 and Level 2 topology

Level 3 topology

Storage of tile boundaries

A tiling scheme

Face cross-tile matching

Library directory

Database directory

Node, edge, and face primitives

Table structure

Examples of the triplet id

Integer number syntax

Real number syntax

Date and time syntax

Latin alphabet primary code table (ASCII)

Latin alphabet supplementary code table of
accents, diacritical marks, and special characters

Usage of accents and diacritical marks

The Definition of Faces (Appendix A)

Winged-edge components (Appendix B)

Face 5 is represented as a single ring in the ring

table (Appendix B)

Face 5 is represented as two rings in the ring table

{Appendix B)

Face 5 is represented as two rings in the ring table

(Appendix B)

Winged-edge example (Appendix B)

Cross-tile edge rules (Appendix B)

Tile boundary primitive behavior (Appendix B)

Cross-tile edge example (Appendix B)

Implementation of a 1:1 feature class in an untiled

coverage (Appendix C)

Implementation of a 1:1 feature class in a tiled

coverage (Appendix C)

Implementation of a 1:1 feature class in a tiled

coverage with a thematic index (Appendix C)

Implementation of a 1:1 feature class in‘'a tiled

vi

18
19
20
26
27
28
32
36
37
39
40
41
44
45
46
47
49
56
83
97
98
100
101
103

104
105
112
116
117

117
118
119
122
123
124
128
129
130

131

40
40.1
41

42

43

44

45

46

47

48

49
50
51
52
53-
54
55
56

MIL-STD-2407

coverage with FEATURE ID columns added to the
primitive tables (Appendix C)

Implementation of a 1:1 feature class in a tiled
coverage with FEATURE ID columns in the primitive

PAGE

133

Feature-to-primitive and primitive-to-feature linkage 134

tables and thematic index (Appendix C)
Implementation of a 1:N feature class in an untiled
coverage with a join table (Appendix C)
Implementation of a 1:N feature class in an untiled
coverage using join tables and thematic indexes
(Appendix C)

Implementation of a 1:N feature class in a tiled
coverage (Appendix C)

Implementation of a 1:N feature class in a tiled
coverage that includes FEATURE ID columns in
primitive tables (2Appendix C)

Implementation of a 1:N feature class in a tiled
coverage that includes FEATURE ID columns and
thematic indexes (Appendix C)

Implementation of a complex feature composed of
simple features in separate tables (Appendix C)
Implementation of a complex feature relationship
in which many complex features are made up of many
simple features in one feature table (Appendix C)
FCS record numbers linking tables for complex
feature (Appendix C)

Data quality coverage design-1 (Appendix E)

Data quality coverage design-2 (Appendix E)
Spatial index cell decomposition (Appendix F)
Location of MBRs in tile (Appendix F)

Tile content divided in four quarters (Appendix F)
First cell split (Appendix F)

Content of cell 1 (Appendix F)

Second cell split (Appendix F)

vii

136

137

138

139

141

145

146

147

156
158
163
166
167
168
169
170

oUW

[o o]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

MIL-STD-2407

Directory structure
VPF table structure
City attribute table
State attribute table
Feature table structure
Feature class schema table
Feature class schema table
and simple feature class
Columns required to define topology in
VPF coverages
Table definition example
Column types
Key types
Optional/mandatory conditions
Reserved file names
Reserved directory names
Reserved table name extensions
Entity node definition
Entity node records
Connected node definition
Connected node records
Edge table definition
Edge record example
Face table definition
Face record example
Ring table definition
Ring record example
Text primitive structure table
Text primitive record example
Minimum bounding rectangle definition
Face bounding rectangle record example
Feature table definition
Join table definition
Feature class schema definition
Feature class schema example
Value description table definition
Integer value description record example
Library header table
Geographic reference table
Coverage attribute table
Coverage attribute table example
Tile reference area feature table definition
Tile area feature record example
Registration point table
Diagnostic point table
Library attribute table entity definitions
Library attribute table example _

viii

20
22
23
24
31
33

34

38
50
51
52
52
53
54
54
57
57
58
58
60
60
61
62
62
63
63
64
64
65
66
68
70
70
71
71
73
74
75
75
76
76
77
77
78
78

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69

70

71
72
73
74
75
76
77
78
79

80

81
82
83
84

MIL-STD-2407

Database header table definition

Data quality table definition

Narrative table definition

Header field definitions

Text header example

Components of variable-length index file

Spatial index file header record layout

Structure of the bin array record

Structure of the bin data record

Thematic index file header record layout
Structure of index directory record

Thematic index header example

Thematic index directory example

Thematic index data example

Feature class attribute table definition

Feature index table definition

Allowable field types

Type byte definitions

Sample area feature table for FIGURE 32 (2Appendix B)
Sample face table for FIGURE 32 (Appendix B)
Sample ring table for FIGURE 32 (Appendix B)
Feature table join column definitions (Appendix C)
Content and Format for Terminal Procedures Coverage
Feature Class Schema Table (Appendix C)

Minimum and maximum coordinates for 19 primitives
in a tile. Universe is primitive number 1
(Appendix F)

Minimum and maximum spatial index coordinates
(Appendix F)

Example of spatial index (Appendix F)

Vertical datum codes (Appendix G)

Coding for units of measure (Appendix G)

Coding for ellipsoids (2Appendix G)

Coding for geodetic datums (Appendix G)

Coding for projections (Appendix G)

Database Header Table (Appendix H)

Library Attribute Table (Appendix H)

Coverage Attribute Table (GENERAL Library)
(Appendix H)

Geographic Reference Table (GENERAL Library)
(Appendix H) '

Library Header Table (GENERAL Library) (Appendix H)
Line Feature Table (LIBREF coverage) (Appendix H)
Area Feature Table (TILEREF coverage) (Appendix H)
Coverage Attribute Table (BROWSE library)
(Appendix H) '

ix

PAGE

79
81
82
84
86
86
87
88
88
90
91
91
92
92
93
94
95
97
119
120
120
126
148

164

165

171
173
174
174
175
180
183
184
184

185

186
187
188
188

85

86
87

88
89
90
91
92
93
94

95
96

97

98
99

100
101
102

103

E

ZTOoOmEBUOWw

MIL-STD-2407

Geographic Reference Table (BROWSE library)
(Appendix H)

Library Header Table (BROWSE library) (Appendix H)
Feature Class Schema Table (LIM coverage)
(Appendix H)

Area Feature Table (LIMBNDYA.AFT) (Appendix H)
Area Join Table (LIMBNDYA.AJT) (Appendix H)

Notes Join Table (LIMBNDYA.NJT) (Appendix H)

Notes Related Attribute Table (LIM coverage)
(Appendix H)

Character Value Description Table (LIM coverage)
(Appendix H)

Integer Value Descripton Table (LIM coverage)
(Appendix H)

Feature Class Attribute Table (LIM coverage)
(Appendix H)

Face Feature Index Table (LIM coverage) (Appendix H)
Entity Node Table (ECR coverage, tile GJIND)
(Appendix H)

Connected Node Table (ECR coverage, tile GJND)
(Appendix H)

Edge Table (ECR coverage, tile GJND) (Appendix H)
Edge Bounding Rectangle Table (ECR coverage,
tile GJIND) (Appendix H)

Ring Table (ECR coverage, tile GJND) (Appendix H)
Face Table (ECR coverage, tile GJND) (Appendix H)
Face Bounding Rectangle Table (ECR coverage,
tile GJND) (Appendix H)

Text Table (ECR coverage, tile GJND) (Appendix H)

INTRODUCTION TO THE VPF DATA MODEL
WINGED-EDGE TOPOLOGY

FEATURE CLASS RELATIONS

TILING

DATA QUALITY

SPATIAL INDEXING

CODING FOR METADATA TABLES

SAMPLE VPF DATABASE

189

190
190

193
198
200

200
201
203
222

224
225

226

227
266

268
269
270

271

107
115
125
149
152
159
173
182

MIL-STD-2407

1. SCOPE

1.1 Scope. The vector product format (VPF) is a standard
format, structure, and organization for large geographic databases
that are based on a georelational data model and are intended for
direct use. VPF is designed to be compatible with a wide variety
of applications and products. VPF allows application software to
read data directly from computer-readable media without prior
conversion to an intermediate form. VPF uses tables and indexes
that permit direct access by spatial location and thematic content
and is designed to be used with any digital geographic data in
vector format that can be represented using nodes, edges, and
faces. VPF defines the format of data objects, and the
georelational data model provides a data organization within which
software can manipulate the VPF data objects. A product
specification corresponding to a specific database product
determines the precise contents of feature tables and their
relationships in the database. In this context, each separate
product or application is defined by a product specification and
implemented by using VPF structures.

1.2 2pplicability. The information contained in this
standard shall be used by the Military Departments, Office of the
Secretary of Defense, Organizations of the Joint Chiefs of Staff
and the Defense Agencies of the Department of Defense
(collectively known as DoD Components) in preparing and accessing
digital geographic data required or specified to be in vector
product format.

2. APPLICABLE DOCUMENTS

2.1 General. The documents listed in this section are
needed to meet the requirements specified in sections 3, 4, and 5
of this specification. This section does not include documents
cited in other sections of this specification or recommended for
additional information as examples. While every effort has been
made to ensure the completeness of this list, document users are
cautioned that they must meet all requirements documents cited in
sections 3, 4, and S of this specification, whether or not they
are listed. :

2.2 Goverpment documents.
2.2.1 gSpecifications, standards. and handbooks. The

following specifications, standards, and handbooks form a part of
this document to the extent specified herein. Unless otherwise
specified, the issues of these documents are those listed in the
issue of the Department of Defense Index of Specifications and

MIL-STD-2407

Standards (DODISS) and supplement thereto, cited in the
solicitation (see 6.2).

HANDBOOKS
DEPARTMENT OF DEFENSE

MIL-HDBK-850 - DoD Glossary of Mapping, Charting
and Geodesy (MC&G) Terms

(Unless otherwise indicated, copies of federal and military
specifications, standards, and handbooks are available from the
Standardization Documents Order desk, Bldg. 4D, 700 Robbins Ave.,
Philadelphia, PA 19111-5094.)

2.2.2 Other Government documents. drawings. and publications.

This section is not applicable to this standard.

2.3 Non-Government publications. The following documents
form a part of this document to the extent specified herein.

Unless otherwise specified, the issues of the documents which are
DoD adopted are those listed in the issue of the DODISS cited in
the solicitation. Unless otherwise specified, the issues of
documents not listed in the DODISS are the issues of the documents
cited in the solicitation (see 6.2).

INTERNATIONAL STANDARDS ORGANIZATION (ISO)

ISO 646 - Information Processing-ISO 7-Bit Coded
Character Set for Information Exchange.

IS0 2022 - Information Processing—ISO 7-Bit and 8-
Bit Coded Character Sets—Code Extension
Techniques.

IS0 2375 - Data Processing-Procedure for
Registration of Escape Sequences.

IS0 6937 - Information Processing—Coded Character
Sets for Text Communication.

ISO 8601 - Data Elements and Interchange Formats -
Information Interchange—Representation
of Dates and Times.

IS0 8859.1 - Information processing - 8-Bit single

byte coded graphic character sets -
Part 1: Latin Alphabet No. 1

MIL-STD-2407

IS0 9660 - Information Processing—Volume and File
Structure of CD-ROM for Information
Interchange.

ISO 10646-1 - Information Technology - Universal

Multiple-Octet Coded Character Set
(USC), Part 1: Architecture and Basic
Multilingual Plane

AMERICAN NATIONAL STANDARDS INSTITUTE/INSTITUTE OF ELECTRICAL
AND ELECTRONICS ENGINEERS (ANSI/IEEE)

ANSI/IEEE 754-1986 - IEEE Standard for Binary Floating
Point Arithmetic.

ANSI X3.4-1977 - Code for Information Interchange
(ASCII) adopted in FIPSPUB 1-1,

(Copies of ISO and ANSI documents are available from the
American National Standards Institute, 1430 Broadway, New York, NY

10018.)
FEDERAL INFORMATION PROCESSING STANDARDS (FIPS)

FIPSPUB 151-1 - POSIX: Portable Operating System
Interface for Computer
Environments.

(Copies of Federal Information Processing Standards (FIPS)
are available to Department of Defense activities from the
Standardization Document Order Desk, 700 Robbins Avenue, Building
4D, Philadelphia, PA 19111-5094. Others must request copies of
FIPS from the National Technical Information Service, 5285 Port
Royal Road, Springfield, VA 22161-2171.)

NORTH ATLANTIC TREATY ORGANIZATION - STANDARDIZATION
AGREEMENT (NATO STANAG)

STANAG 7074 - Digital Geographic Information
Exchange Standard (DIGEST),
Version 1.2

Note: VPF products may reside on a variety of media. If a
VPF database product resides on CD-ROM, ISO 9660 CD-ROM format is

required for that product.

2.4 Order of precedence. 1In the event of a conflict between

the text of this document and the references cited herein, the
text of this document takes precedence. Nothing in this document,

MIL-STD-2407

however, supersedes applicable laws and regulations unless a
specific exemption has been obtained.

3. DEFINITIONS

Area feature. A geographic entity that encloses a region;
for example, a lake, administrative area, or state.

Axga_ﬁgg;nxg_glgﬁs. A collection of area features that

maintains a homogeneous set of attributes. Implies the use of
face primitives.

Area feature table. The implementation of an area feature
class in a VPF attribute table.

Attribute. A property of an entity; for example, the color
of a building, the width of a road, or the accuracy level of a
database. Defined subtypes of an attribute are the feature-
attribute, coverage attribute, database attribute, and library
attribute.

Attribute accuracy. Attribute accuracy refers to the

accuracy or reliability of attribute data within the limits
described by feature completeness. If attribute accuracy
information is not available in the above form, a description of
known attribute accuracy characteristics may be substituted.

Attribute completeness. Attribute completeness refers to the
percentage of feature attribute fields not populated by null or

default values.

Attribute table. A collection of identically formatted
(defined) attribute rows. Aun attribute table inherits the
properties of a VPF table, but also may have value description
tables.

Attribute value. The specific value of an attribute; for
example, green for building color, 48 feet for road width, level 2
for the accuracy of a database.

Bvte order. A hardware implementation of an encoding scheme.
It determines the order in which bytes are stored in a long word.
Two commonly used orders are little-endian, or least significant
first (i.e., 1234); and big-endian, or most significant first
(i.e., 4321).

Cartographic primitive. A primitive with no topological

relationship to adjoining or surrounding primitives. The text
primitive is a cartographic primitive.

MIL-STD-2407

Code table. A set of character specifications. A code table
defines the alpha numeric and special characters that are used in
a computer system to model written languages.

Column. The set of all values of a particular attribute
within a table.

Column type. The relational model uses column types to
implement the data type of an attribute. For instance, the column
ELEVATION could have an integer column type.

complex feature. A single feature that relates directly to
other features rather than to a primitive. A single feature
composed of other features, either simple or complex.

Complex feature class. A feature class that includes two or

more other feature classes (simple or complex).

Complex feature table. An implementation of a complex

feature class in VPF.

Compound feature. A single simple feature composed of more
than one primitive of the same type. A compound feature may cross

tile boundaries.

Compound kKey. A group of columns used together to create a
key in a relational table.

Connected node. One of the two node primitive types. It is
used to represent linked features that are zero dimensional at a
particular scale. Connected nodes are always found at the ends of
edges and are topologically linked to the edges. Connected nodes
are used in two ways: (1) to define edges topologically (always)
and (2) to represent point features that are found at a juncture
of linear features, such as overpasses, locks in a canal, or
underground utility access points. Under the first usage, the
connected nodes are referred to as start and end nodes. Under the
second usage, attributes will be associated with the point
features related to the connected nodes. If many edges intersect
a node, only one edge will be maintained per node in the connected
node table; other edges are linked by using winged-edge topology.
All connected nodes which lie on a tile boundary will have cross-
tile components (tile_id and first_edge).

Containing face. A face that contains one or more entity
nodes. Used to establish the relationship from an entity node to
its face, if level 3 topology is present.

MIL-STD-2407

Coordinate. A specified position in Cartesian space. The
value takes the form of a short or long floating point value. 2
values (if any) are ignored during the enforcement and use of
planar graphs.

Coordinate array. A fixed-length list of coordinate tuples.

Coordinate pair. A specified position in a two-dimensional
grid, where the first position relates to the X axis and the
second position relates to the Y axis.

Coordinate string. A variable-length list of coordinate
tuples.

Coordinate triplet. A specified position in a three-
dimensional grid, where the first position relates to the X axis,
the second position relates to the Y axis, and the third position
relates to the Z axis.

Coordinate tuple. A coordinate pair or triplet.

Coverage. A set of feature classes that has a specified
spatial extent and in which the primitives interconnect as
described by the coverage's topology.

Coverage attribute. A property of a coverage. The coverage
attribute table contains properties for all coverages in the
library.

Cross-tile topologv. The encoding of topological
relationships in such a manner that those relations are maintained
even when a coverage has been physically partitioned into multiple
tiles.

Data dictionarv. A collection of tables with entries that
define the meaning of attributes and the allowable values (or
ranges of values).

Data syntax. A description of the computer-readable (bit-
level) representation of data.

Database. A collection of related libraries as defined by a-
product specification.

Database attribute. A property of a database.

Date status. Date status refers to the date at which the
data was introduced or modified in the database. This date of
entry is used as a proof of modification for a single data element

MIL-STD-2407

and permits the statistical interpretation of groups of data
elements.

Direct access. Retrieval of data by reference to its
location on a storage medium rather than relative to the
previously retrieved data. The access mechanism goes directly to
the data in question. This access method is normally required for
on-line data usage.

Directorv. A file that contains a list of the unique names,
beginning addresses, and lengths of other files.

Edge. A one-dimensional primitive used to represent the
location of a linear feature and/or the borders of faces.
Depending upon the level of topology, edges may be topologically
linked to nodes, edges, and faces. Edges are composed of an
ordered collection of two or more coordinate tuples (pairs or
triplets). At least two of the coordinate tuples must be
distinct. The orientation of an edge can be recognized by the
ordering of the coordinate tuples.

Encapsulation. A set format that serves to identify data
elements.

Encoding. The assignment of bit-patterns to data types in a
computer. For example, one given bit arrangement may define an
integer data type (e.g., 2's complement, 1l's complement, or
biased), whereas another may describe a character data type (e.g.,
ASCII, EBCDIC).

End node. The terminating node of an edge.

Entity. A general term for any object that is belng modeled
or defined within a database.

Entitv node. One of the two node primitive types. It is
used to represent isolated features that are zero dimensional at a
particular scale. Entity nodes are topclogically linked to a
containing face when face topology is present. Entity nodes
cannot occur on edges.

Escape sequence. A special character code used to extend the
characters used in a character code table.

Face. A region enclosed by an edge or set of edges (a face
has area). Faces are topologically linked to their surrounding
edges as well as to the other faces that surround them. Faces are
always non overlapping, exhausting the area of a plane.

MIL-STD-2407

Feature. A model of a real world geographic entity. A
zero-, one-, or two-dimensional entity of uniform attribute scheme
from an exhaustive attribute distribution across a plane, or a set
of such entities sharing common attribute values. Simple and
complex are types of features.

Feature attribute. A property of a feature.

Feature class. A set of features that shares a homogeneous
set of attributes. A feature class consists of a set of tables
that includes one or more primitive tables and one or more
attribute tables. A feature class has the same columns of
attribute information for each feature. Every feature class has
one and only one feature table. The two types of feature classes
are the simple feature class and complex feature class. The
subtypes of the simple feature class are the point feature class,
line feature class, area feature class, and text feature class.

Feature class attribute table. The feature class attribute

table contains properties for all feature classes in a coverage.
The feature class attribute table is regquired to support the
feature index tables.

Feature class schema table. A table that stores the

composition rules of each feature class. This table describes the
definition for each feature class and the way in which each table
in a feature class relates to other tables.

Feature completeness. Feature completeness refers to the

degree to which all features of a given type for the area of the
data set have been included.

Feature index table. The feature index table is constructed

specifically to provide for rapid retrieval of feature information
when given a selected primitive. It provides a join index from
primitive to feature.

Feature join table. A table that identifies 1:N or N:1

relationships between features and other features or primitives.
Simple features may be composed of one or more primitive
instances, and complex features may be composed of one or more
simple features or other complex features. A primitive instance
may belong to more than one feature.

Feature table. A table made up of rows of features in a
feature class. These rows collectively form the feature table for

that feature class.

Field. 2 field contains a single attribute value of a single

MIL-STD-2407

entity. Fields in a table identify the data types contained
within each table.

File. A named stream of bytes. The three VPF file types are
directory, table, and index file.

First edge. An edge arbitrarily selected as the first edge
to enable traversing around a connected node.

Fixed field. A field made up of a predefined number of
bytes. Fixed fields are generally used for numeric data, or when
blank entries are significant.

Foreian kevy. One or more columns in one table that are used
as a primary key in another table.

Geographic entitv. A phenomenon characterized by its

locational context and about which spatially referenced
information is stored.

Geographic information system (GIS). An organized collection

of computer hardware, software, geographic data, and standard
operating procedures for efficiently capturing, storing,
maintaining, retrieving, analyzing, displaying, and reporting
spatially referenced information.

Geographic reference table. A table that defines the

coordinate system of a library.

Geometric primitive. The basic geometric units of

representation; specifically, nodes, edges, and faces.

Georelational data model. A generic conceptual model in

which geographic information is represented by using a combination
of vector geometry and planar, topology, and relational data
models.

Index. A mechanism used to quickly identify a particular
record or group of records based on a table's primary key.

Index file. The implementation of an index stored in a file.
There are variable-length indexes, spatial indexes, thematic
indexes, and feature indexes.

Inper ring. The inner boundary of a face, composed of edges
ordered in a sequence. A face may have none or any arbitrary
number of inner rings.

Integrated data. A geographic data set in which all feature

MIL-STD-2407

data are contained in a single coverage. Opposite of layered
data. :

Key. In a relational data model, one or more columns
(attributes) whose values uniquely identify or can be used to
select a row.

Lavered data. Feature data thematically separated into

separate coverages. Opposite of integrated data.

Left edge. The left edge is the first neighbor of the
current edge as one moves counterclockwise around the start node
of the current edge.

Left face. The face to the left of an edge in a traverse
from the start node to the end node.

Levels of topology. See topology.

Librarv. A collection of one or more coverages contained
within a specified spatial extent, all of which share a single
coordinate system. Coverages may be tiled in a library. All
tiled coverages in a library must share a common tiling scheme,
however.

Librarv attribute. A property of a library. The library

attribute table describes the properties of each library in a
database.

Line feature. A geographic entity that defines a linear
(one-dimensional) structure; for example, a river, road, or a
state boundary.

Line feature class. A collection of line features that

maintains a homogeneous set of attributes. Composed of edge
primitives.

Line feature table. The implementation of a line feature
class in a VPF attribute table.

Lineage information. Information that describes processing

tolerances, interpretation rules applied to source materials, and
basic production and quality assurance procedures. Lineage
information should include all available information from the
source.

Logical consistency. Logical consistency refers to the
fidelity of the relationships encoded in a data set. In a VPF

data set, logical consistency requires that all topological

10

MIL-STD-2407

foreign keys match the appropriate primitive, that all attribute
foreign keys match the appropriate primitive or features, and that
all tables described in the feature class schema tables maintain
the relationships described.

Media volumes. As used herein, the number of distinct media
that comprise a VPF database. For instance, there may be four CD-
ROM media volumes in one database.

Medium. A data storage device (e.g., a CD-ROM, hard disk
drive, magnetic tape, or floppy disk).

Metadata. Information about data; more specifically,
information about the meaning of other data.

Minimum bounding rectangle. A rectangle of coordinate tuples

that defines the minimum and maximum coordinates of an entity.
Abbreviated as MBR. -

Names reference coverage. A coverage that contains (at a

minimum) a point feature table with columns indicating a place
name and its known coordinate. Used to help a user locate places
by name.

NaN. Stands for not a number. Used as a floating point null
value in VFF.

Neutral format. A characteristic of a data model that does
not contain product-specific information.

Node. A zero-dimensional geometric primitive that is
composed of a single coordinate tuple (pair or triplet). There
are two types of nodes: entity nodes and connected nodes. Only
one node can occupy a single geographic location.

Quter rinag. The outermost boundary of a face, composed of
edges ordered in a sequence.

Pathname. A file name that uniquely identifies the location
path to a file within a series of one or more directories.

Planar model. 2 planar model is a two-dimensional surface in
which every point has a neighborhood (a two-dimensional region)
that is topologically equal to a flat disk. It is implemented as
a planar graph {N, E, F} with a finite number of nodes N = {nl,
n2,...}, edges E = {el, e2,...}, and faces F = {fl, £2,...}
bounded by edges and nodes. Each edge has an orientation from its
first (starting) coordinate tuple to its last coordinate tuple.
Also, each face of the graph has a certain orientation (cycle)

11

MIL-STD-2407

around its edges and nodes. Each edge of a planar model is
incident with exactly two faces.

Point feature. A geographic entity that defines a zero-
dimensional location; for example, a well or a building.

Point feature class. A collection of point features that

maintains a homogeneous set of attributes. Composed of node
primitives. ' :

Point feature table. The implementation of a point feature

class in a VPF attribute table.

Pointer. A field within a record or within an index that
contains the address of a record.

Polvagon. Thematically homogenous areas composed of one or
more faces.

Positional accuracy. Positional accuracy refers to the root
mean square error (RMSE) of the coordinates relative to the
position of the real world entity being modeled. Positional
accuracy shall be specified without relation to scale and shall
contain all errors introduced by source documents, data capture,
and data processing.

Primary kev. A key whose value uniquely identifies a row.

Primitive. The smallest component of VPF, of which all
features are composed. There are three geometric primitives
(nodes, edges, faces) and one cartographic primitive (text).

Primitive table. A primitive table inherits the properties
of a VPF table, but may also have an associated minimum bounding
rectangle table and/or a spatial index file.

Product specification. A document that defines the precise

content and format of a specific product. It contains technical
requirements and database design decisions such as coding, tiling,
special relationships between entities, and so forth. 1In the
context of the VPF, each separate product or application is
defined by a product specification and implemented by using VPF
structures.

Right edge. The right edge is the first neighbor of the
current edge as one moves counterclockwise around the end node of
the current edge.

Right face. The face to the right of an edge in a traverse

MIL-STD-2407

from the start node to the end node.

Ring. A connected set of edges that composes the face
border. Any single ring is only referenced to and by a single
face. If the same set of edges is shared by two different faces,
two rings that correspond to the two faces are created from the
single edge set. Rings only occur at level 3 topology (when faces
are also present).

Row. An ordered collection of fields pertaining to the
entity. A tuple in a relation.

Bow id. An integer that uniquely identifies each row in a
table.

Schema. A description (or picture or diagram) of the
structures of a database system.

Schema table. A schema table defines the tables and their
relationships within a coverage.

Semantics. The implied meaning of data. Used to define what
entities mean with respect to their roles in a system.

Shape line. An ordered set of one or more coordinate tuples
that define the placement and shape of a text primitive.

Simple feature class. Consists of a single type of primitive

(face, edge, node, or text) and a feature table. There are four
subtypes of simple feature classes: point, line, area, and text.

Source. Source information describes the origin or
derivation of a single feature, primitive, or attribute. It
includes information about processing of the data as well as
information about the data source.

Spatial index. A data structure file that allows for the
rapid identification of a primitive by using the values of the
, primitive's coordinates.

Start edge. An edge arbitrarily selected as the start edge
to enable traversing through the ring table asociated with a face.

Start node. The first node of an edge.

Syntax. The rules governing the construction of a machine
language or machine representation of entities.

Table. An organizational structure for data content. 1In the

13

MIL-STD-2407

relational model, a table is a group of repeating rows defined by
columns. Equivalent to a relation.

Text feature. A cartographic entity that relates a textual
description to a zero- or one-dimensional location. A text
feature usually contains information such as font, color, and
height.

Text feature class. A collection of text features that

maintains a homogenous set of attributes. Composed of text
primitives.

Text feature table. The implementation of a text feature
class in a VPF attribute table.

Text primitive. Characters placed in specific locations in a
coordinate system. Text is a cartographic object, rather than a
geographic entity, since it does not participate in topology. A
text array indicates a fixed-length string of characters. A text
string indicates a variable-length collection of characters.

Thematic attribute. A column in a table that provides a

thematic description of a feature. For example, a feature class
that contains rivers may have attributes such as width, depth, and
name.

Thematic index. A file that allows software to access the
row ids of its associated table. In a VPF table, the index is
created on a column. Four special indexes are used for feature
tables: point, line, area, and text thematic indexes.

Theme. An organizational concept used in the design of
spatial databases. Common themes in spatial geographic databases
are transportation, hydrology, and soil/land suitability.

Tile. 2 spatial partition of a coverage that shares the same
set of feature classes with the same definitions as the coverage.
The topology of each tile is independent of that of each other
tile in the coverage.

Tiled coverage. A coverage that has been physically
partitioned into tiles.

Tiling scheme. The scheme used to define tile shape and size
and to identify tiles (assign identification numbers).

Topoloay. The branch of mathematics concerned with geometric

relationships unaltered by elastic deformation. In geographic
applications, topology refers to any relationship between

14

MIL-STD-2407

connected geometric primitives that is not altered by continuous
transformation. VPF recognizes four levels of topology. Level 0
topology manipulates the purely geometric aspects of the spatial
data. No topological information is stored in level 0 topology.
Level 1 topology maintains a nonplanar graph. Level 2 topology
maintains a planar graph. Level 3 topology explicitly represents
the faces defined by the planar graph. See Figure 10.

Traverse. An algorithm that uses winged-edge topology to
retrieve a series of neighboring edges to satisfy a query of a
network.

Triplet id. A variable-length structure used to contain
information for crossing tile boundaries. The first field
contains the internal primitive id (referred to as ID). The
second field contains the tile reference coverage id (TILE_ID),
and the third field contains the primitive id in the associated
tile (EXT_ID). _

Tuple. See coordinate tuple.

Universe face. The unbounded region surrounding a level 3
topology coverage. The universe face always maintains the first
record in a face table.

Variable-length column. A column whose length is determined

by the amount of storage needed to store its contents. Useful for
character strings and coordinate strings.

Yector. 1Indicates a collection of coordinate tuples to
define a geographic or geometric entity.

Yector product foxrmat. A standard format, structure, and

organization for large geographic databases based on a
georelational data model and intended for direct access.
Abbreviated as VPF.

YPF table. A VPF table consists of a table header and rows
of data sharing the same column definitions, each having a unique
row id. Primitive tables, attribute tables and feature tables are
all special purpose VPF tables.

Winged-edge topoloavy. A topological construct that connects

each edge to two of its neighboring edges, allowing topologic
traversal of an edge and/or face network. A neighboring edge is
any edge that shares a start or end node with the original edge.
An edge has a start node, which is connected to the left edge, and
an end node, which is connected to the right edge.

15

MIL-STD-2407

4. GENERAL REQUIREMENTS

4.1 General. Vector product format is a generic geographic
data model designed to be used with any digital geographic data in
vector format that can be represented using nodes, edges, and
faces. VPF is based upon the georelational data model,
combinatorial topology, and set theory (see appendix A for
discussions of these concepts).

A VPF-compliant database product must include all mandatory tables
and columns which are described in section 5. Similarly, a VPF-
compliant application must properly interpret all mandatory and
optional tables and columns enumerated in this document.’

4.2 YPF characteristics. VPF is a model for digital
geographic databases that are intended to allow flexibility in
encoding and yet permit direct data access from a variety of
applications operating on different computer systems. VPF _
characteristics are as follows:

a. Sheetless database support. VPF is designed to support a
sheetless database by providing logically continuous
topological relationships even when the database itself
is physically partitioned into tiles. VPF structures
support the query and retrieval of data that extends
across tile boundaries.

b. Neutral format. VPF has a product-neutral format that
must be used in combination with an individual product
specification to create a product. VPF is topologically
structured and supports various levels of topology, from
a simple list of coordinates to planar model topology.

c. Attribute support. VPF uses tables for attribute
handling. The tables support both simple and complex
features.

d. Data dictionary. VPF contains a self-defining data
dictionary that permits user understanding of features
and their attributes.

e. Text and metadata support. Text information may be
encoded either as attributes of features or as 'free
floating' text primitives. VPF is compatible with all
written languages, including those with accented
characters and diacritical marks. In addition to
supporting basic cartographic information, VPF supports a
variety of metadata files containing 1nformat10n about
all or part of the database.

16

MIL-STD-2407

f. Index file support. Index files that are desirable to
enhance database retrieval performance are also
incorporated within VPF. These can include spatial and
thematic indexes.

g. Direct access. VPF allows application software to read
data directly from the storage medium without prior
conversion to another format. VPF uses tables and
indexes that permit direct access by spatial location and
thematic content.

h. Flexible, general-purpose schema. VPF can represent
digital geographic data in vector format by providing
flexibility in the modeling of any feature data
organization, from fully layered to completely
integrated. VPF supports coordinate pairs and triplets,
multiple scales, and the creation of multiple products.

i. Data quality. VPF includes standards for data quality
reporting and representation. It provides multiple
methods for the representation of the spatial and
aspatial aspects of data quality.

j. Feature definitions. VPF organizes features and thematic
attributes to allow creation of products that are
logically consistent and complete.

4.3 Relationship between VPF and specific products. VPF

establishes a standard data model and organization, providing a
consistent interface to data content. Data content itself shall
be defined in a product specification that determines the content
of the feature tables and the relationships between them. VPF can
also accommodate additional tables that are not required by VPF
itself. Without further standardization these additional tables,
although VPF compliant in structure, will provide column names and
attribute values which may not be understood by others. Use of
tables outside of those described in this standard may limit
interoperability. FIGURE 1 illustrates the relationship between
VPF and specific products.

17

MIL-STD-2407

Digital

Digital Digital

1:1,000,000 1:50,000 1:250,000
Contents Product Product Product
Specification Specification Specification

PR i S m—

Vector Product

Forms
Format
Products Digital Digital Digital
1:1,000,000 1:50,000 1:250,000
Product Product Product
Vector Product
Applications Format Software
End User

Analyst

FIGURE 1.

4.4 YPF hierarchy. VPF can be viewed as a five-level hierarchy
of definitions (FIGURE 2) that increase in degree of abstraction
from the bottom up. The bottom two levels define the physical
representations of various data structures utilized in VPF. The
data structure level concerns the logical representation of VPF
data objects. These objects are elements in the VPF data model.
The data model describes the data objects and the relationships
among them. The top level, which contains the product
specification, is used to tailor VPF to the requirements of the
product.

18

MIL-STD-2407

Product
Specification

Vector Product
Format

Data Model

¥

Data Syntax

FIGURE 2. VYector product format structure.

This document gives a definition of VPF that encompasses the
bottom four levels. A product specification is a combination of
the conceptual database design and implementation details required
to develop a product that is compliant with VPF. The conceptual
modeling of feature classes and coverages is the first
responsibility of the author of the product specification. This
includes defining the list of features, attributes, attribute
values, and providing their definitions. The physical design of

the product database is also the responsibility of the author of
the product specification. Physical design considerations include
determining the tiling scheme, the topology level, the feature
to/from primitive relationships (i.e., 1:1, 1:N, N:1, and N:M),
the column types, and the table definitions.

Vector product format is defined in section §. Section 5.2
defines the data objects in VPF and the various roles these
objects play in the data model. The logical data structures are
described in section 5.3, which explains the implementation of
VPF; that is, how to construct VPF-compliant databases and
applications.

Encapsulation is defined in section 5.4, which identifies the data
structure fields. Data syntax is described in section 5.5.

19

MIL-STD-2407

5. DETAILED REQUIREMENTS

5.1 General. This section describes the necessary
components of vector product format. Section 5.2 discusses the
conceptual components of the VPF data model (see appendix A for an
overview describing the data model). Section 5.3 contains
definitions of the data structures implemented in VPF. The
encapsulation of VPF field types, table construction, and indexing
structures are discussed in section 5.4. The encoding of the data
syntax is found in section 5.5.

5.2 VPF data model. The discussion of the data model is
broken into three subsections: data organization, VPF data model
components, and data quality. Each of these subsections addresses
the data model from a different perspective. The data
organization subsection (5.2.1) addresses VPF by defining the
physical structures that make it up. Only three structures are
used to implement the entire VPF data model: directories, tables,
and indexes. The data model component subsection (5.2.2)
addresses VPF by defining the entities in a geographic database
and describing the way in which these entities are captured
through the physical VPF structures, starting with the most basic
components (primitives) and continuing through the other levels
(features, coverages, libraries, and database). Finally, the data
quality subsection (5.2.3) describes the options available in VPF
for the maintenance of data quality information at any level in
the data model.

5.2.1 Data organization. All VPF data are organized in the
form of files. A file is a named, sequentially ordered stream of
bytes (FIGURE 3). Files may be created, deleted, opened, closed,
read (from byte m to byte n), and written (from byte m to byte n).

byte 1 byte 2 byte 3 | byten |

FIGURE 3. BRvte stream.

VPF uses only three types of files: directories, tables, and
indexes. All directory and file names in VPF data bases are to be
in lower case. Within this document, upper case letters have been
used for readability.

5.2.1.1 Directorvy. The directory is a file that identifies

20

MIL-STD-2407

the names of a collection of files, and their beginning addresses
and lengths (TABLE 1).

TABLE 1. Directory structure.

Directory
Name ' Address Length
File Name Location on Length In M?dia
Medium Storage Units

VPF directories are strictly hierarchical; each file is contained
in exactly one directory. File names must be unique within a
directory. A file referenced by a directory is said to be
contained in that directory. A file contained in a directory may
be referenced by a special form of its name called a pathname
(because it contains the location path to the file). A pathname
has the following form:

<directory name><separator><file name>

where:
< > indicates that the enclosed name element is to be replaced
with the actual text string indicated.

VPF uses the backslash character (\) as the generic pathname
directory separator. For platforms requiring a different
‘'separator, software will replace the backslash with the
appropriate separator character. For example, if a file named
ROADS.LFT is contained in a directory named URBANAREAS, and the
separator is (\), tha resulting pathname would be:

URBANAREAS\ROADS .LFT

Directories are themselves files, so they may be contained in
other directories. They are referenced by pathname the same way
as other files. Thus, if URBANAREAS is contained in LIBRARY1l, the
resulting pathname would be:

LIBRARY1\URBANAREAS

Finally, pathnames may be combined. Since the directory that
contains a file can be contained within a directory itself, it is
necessary to have a form of file name that uniquely identifies
that file contained within that directory (file names, while
unique within a directory, are not unique between directories).
For our example, that form would be: ‘

21

MIL-STD-2407

LIBRARY1\URBANAREAS\ROADS.LFT

5.2.1.2 Tables. In the VPF data model, the table is the
organizational structure for all data content. All tables in a
VPF database share a common basic structure; this structure, which
is described in the VPF table components section below (5.2.1.3),
is mandatory for all VPF tables.

By definition, a VPF table must include at least the basic
structure. Optionally, a VPF table can also reference additional
structures: the narrative table, thematic index(s), column
narrative table(s) and value description table(s). A table can
also have an associated variable length index and a spatial index
(for primitive tables). In the VPF data model, all geographic
phenomena are modeled by VPF tables or by tables derived from a
VPF table. A table derived from a VPF table is one that possesses
all the properties of a VPF table but also has additional -
properties that support other specific functions.

The primitive table and the attribute table are examples of
derived VPF tables. A derived table can also be further
specialized to satisfy a particular need. A feature table may be
derived from the attribute table, for example.

A VPF table may have an associated index file for variable-length
records and a narrative table. A primitive table (discussed in
section 5.2.2.1) may possess these two tables associated with its
VPF table, but may also have a spatial index file and a minimum
bounding rectangle table. An attribute table may also possess the
tables associated with a VPF table, but may also have value
description tables that provide the data dictionary for the table.
The same data dictionary table may be shared by more than one
attribute table. Finally, a feature table inherits the tables
associated with an attribute table, but may also have a thematic
index file. Feature tables are discussed further in section
5.3.3.1.

5.2.1.3 VPF table components. VPF tables consist of the
following parts: a table header, a row identifier, and the table

contents (under special situations (section 5.2.2.3.3) a table may
contain only a header). The table header contains the metadata
about a table and the column definitions. Columns are defined by
a name and a data type; each column must have a name that is
unique within the table.

Data contents in VPF tables are organized into rows and columns.

All rows in a table share the same column definitiqns. Each row
in the table is defined by a unique row identifier (row id). The

22

MIL-STD-2407

row ids shall start at 1 and be sequential with no gaps in the
numbering. TABLE 2 depicts the principal components of a VPF
table.

TABLE 2. YPF table structure.

. Table Header
Metadata and column definitions:

a. Table description
b. Narrative table name (optional)
c. Column definitions:
Column name
Field type
Field length
Key type
Column textual description
Optional value description table name -
Optional thematic index name
Optional column narrative table name

ID Table Contents
Indicates the starting The data composing the table
position of each row. that match the column
definitions.

This document describes the column definitions for all the VPF
standard-specified columns, and the table organization for those
columns. No specific ordering of columns within a table is
required. Product specifications may require a specific column
order. Data columns and tables described in this document are
labeled either mandatory or optional. 2 VPF product must include
all mandatory tables and columns. It is not possible to remove
any mandatory column from any table. A VPF-compliant application
must be able to process a VPF product and interpret all mandatory
and optional columns as described in this document.

Additional product-specific columns are allowed by VPF. If
present, these columns must be defined in their product
specifications. Product-specific columns must not alter the use
of the columns specified in this document.

5.2.1.4 Indexes. A table may have associated indexes. If a
table contains a variable-length coordinate string column or a
variable-length text string column, a separate index file must be
present.

23

MIL-STD-2407

In addition to variable-length indexes, VPF also supports spatial
and thematic indexes. Spatial indexes contain references to row
data that are based on the value of a coordinate column. Thematic
indexes contain references to row data that are based on the value
of noncoordinate columns.

5.2.1.5 Narratijve tables Each VPF table may have an

associated narrative table that provides miscellaneous information
about the VPF table. The purpose of the narrative table is to
provide the database designer with the ability to record comments
or information pertinent to the associated table. The narrative
table name is stored in the VPF table's header information. In
addition, VPF provides for optional narrative tables keyed to
individual columns within a table. The narrative table name is
stored as the third optional entry in the column definition (see
TABLE 2).

5.2.1.6 Attribute tables. Real-world objects are referred
to as entities or features; they are modeled in tables in VPF.
The properties of entities are called attributes. In an attribute
table, one table column is defined for each attribute describing
an object. Each object occupies a row in the table. Examples of
attributes include data quality, size, and name. A sample
attribute table is shown in TABLE 3.

A column or a group of columns that can be used to identify or
select a row is called a key. A unique key is a key that uniquely
identifies each row. One unique key is designated the primary
key; each table has one and only one primary key. In the city
attribute table (TABLE 3), the Built-Up Area column is the primary

key.
TABLE 3. City attribute table.
. Median
Built-Up Population Income per
ID Area State Size Household
character character binary binary
implicit string string integer integer
UNIQUE KEY PRIMARY KEY NON-UNIQUE NON-UNIQUE NON-UNIQUE
1 Los Angeles California 2966850 15735
2 New York New York 7071639 13854
3 Salt Lake City Utah 163033 13211
4 Las Vegas Nevada 164674 17468
S San Francisco | California 1366383 16782

24

MIL-STD-2407

A relational join is a database operation that brings together a
number of tables into a new relation by using a set of common
keys. The tables in such joins are called base tables. When a
common key in a join is the primary key in one of the base tables
but not in another, the non-primary (yet common) key is called a
foreign key. In the city attribute table (TABLE 3), the State
column is a foreign key; in the state attribute table (TABLE 4),
the State column is the primary key. 1In the city attribute table
(TABLE 3) the State column becomes a foreign key only through its
reference by the state attribute table (TABLE 4).

TABLE 4. State attribute table.

Area Total
ID State (sg. mi.) Population

implicit character string |binary integer | binary integer

UNIQUE KEY PRIMARY KEY NON-UNIQUE NON-UNIQUE
1 California 158706 26365000
2 Nevada 110561 936000
3 New York 49108 17783000
4 Utah 84899 1645000

5.2.2 YPF data model components. The VPF data model may be

considered to be layered into four structural levels (FIGURE 4).
At the lowest level, a VPF database consists of feature classes.
In the database, these feature classes are defined using VPF
primitive and attribute tables. Feature classes make up
coverages, which in turn make up libraries; and finally, a
database is made up of libraries.

25

MIL-STD-2407

Database
(Figure 17)

?

B e W S A
Library
(Figure 16)

’

T

Coverage
(Flgur: 8) g

[. T

Feature Class
(Figure 7)

FIGURE 4. YPF structural levels.

An analogy can be drawn between VPF and written language. Letters
are at the bottom of the language hierarchy. Words are made up of
letters. 1In turn, sentences are made up of words. An essay is
created from sentences, and a collection is made up of essays.
Each of these entities has a distinct and different meaning not
possessed by the entities below. The content of each entity,
however, depends on that of the constituent entities. Databases
and libraries are used primarily to facilitate data access,
whereas coverages (which incorporate topology) are used to define
- the relationships between features.

26

MIL-STD-2407

5.2.2.1 Primitives. There are three geometric primitives in
VPF: nodes, edges, and faces (FIGURE 5). As FIGURE 5 shows,
there are two types of node primitives: entity nodes and
connected nodes. There is one type of cartographic primitive,
text. These four primitives are combined to model any geographic
phenomena using vector geometry. All primitives except text can
be linked to each other by topological relationships, which are
discussed further in section 5.2.2.3.1.

:ﬁ:: .-.;.;':4.;;::;:::;:::;:-:::::;:;:ﬁ::::::i:i:'-.:=:=:=: IB6RS: 15 |
State Boundariest
e Cities i
| FACE
CONKECTED KODE
] EDGE
. TEXT
ERTITY KODE

FIGURE 5. Geometric and cartographic primitives.

27

MIL-STD-2407

Face Edge Entity Connected Text
Table Table Node Table Node Table Table
Edge Entity (" Connected Text
Face B ai Spatial tial Spatial
p| Bownding | Lo ounding 3 Spatia Index
Rectangle Re;;;’;gle In = \. Index
e
Table Variable-
i _’ Length
: Variable- Narrative Narrative J .
L] P9] Length table Index
Table Index * table
ti
v f_m Narrative
. - . table
—| spatial -] spatial Thematic Themat ic
Index \ Index) Index Index
Narrative
Thematic .
—’ Thematic .
Index Index O Optional
Mandatory

* mandatory when variable length column is defined in a table

FIGURE 6. Primitive directory contents.

The following sections summarize each of the primitives. FIGURE 6
depicts each primitive and its associated tables and indexes.

5.2.2.1.1 Nodes. Nodes are zero-dimensional primitives that
are used to store significant locations. No two nodes can occupy
the same coordinate tuple. There are two types of nodes: entity
nodes and connected nodes.

a. Entity nodes. Entity nodes are used to represent
isolated features that are either truly zero dimensional, such as
survey points, or too small to resolve at the collection scale,
such as water towers at 1:24,000 scale. An entity node is
topologically linked to its containing face when face topology is
present. Entity nodes cannot fall on an edge.

b. Connected nodes. Connected nodes are always found at the

28

MIL-STD-2407

ends of edges and are topologically linked to the edges.
Connected nodes are used in two ways: (1) to define edges
topologically and (2) to represent point features that are found
at the start or end of an edge of linear features, such as
overpasses, locks in a canal, or underground utility access
points. Under the first usage, the connected nodes are referred
to as start and end nodes. Under the second usage, attributes
will be associated with the point features related to the
connected nodes. All connected nodes are included in the
connected node table. If many edges intersect a node, only one
edge will be maintained per node in the connected node table;
other edges are linked by using winged-edge topology (APPENDIX B).
All connected nodes which lie on a tile boundary will have cross-
tile components (tile_id and first_edge).

5.2.2.1.2 Edges. Edges are one-dimensional primitives that
are used to represent the locations of linear features (such as
roads) and the borders of faces. Edges are composed of an _ordered
collection of two or more coordinate tuples (pairs or triplets).
At least two of the coordinate tuples must be distinct. The
orientation of an edge can be recognized by the ordering of the
coordinate tuples.

Edges are topologically defined by nodes at ends (levels 1-3
topology); edges, in turn, define faces (level 3 topology). 1In
addition to the Start Node and End Node columns, the edge
primitive table contains column information (Right Edge, Left
Edge, Right Face, Left Face) that is necessary to support higher
levels of topology. This topology information permits the query
and retrieval of features. The direction of an edge is its
orientation from start node to end node. Each edge table has an
associated edge bounding rectangle (EBR) table which contains the
minimum bounding rectangle (MBR) for each edge. There is a one to
one relationship between the edge table and its associated edge
bounding rectangle table. Appendix B describes the use of winged-
edge topology, which is used with edge primitives.

5.2.2.1.3 Faces. A face is a two-dimensional primitive
enclosed by edges; faces are used to represent area features, such
as countries, inland water, or urban areas. Faces are defined by
topological references to a set of edges that compose the face
border. A face may have interior borders as well as exterior
borders, allowing for faces that have other smaller faces within
them. This relation consists of a reference to the start of a
closed ring of edges, which may then be followed clockwise to
close the ring. A face may consist of multiple rings; there may
be one outer ring and zero or more inner rings. Faces are non-
overlapping, and the faces in a coverage completely exhaust the
area of a plane. Each face table has an associated face bounding

29

MIL-STD-2407

rectangle (FBR) table which contains the minimum bounding
rectangle for each face. There is a one to one relationship
between the face table and its associated face bounding rectangle
table.

5.2.2.1.4 Text. Text is a cartographic rather than a
geometric object. Text strings can be placed in specific
locations in geographic space. Text can be used to associate
names with regions that are vague or ill defined, such as the
Rocky Mountains. A text primitive may also be used when the name
of a feature needs to be located in a specific relationship to a
feature and could not otherwise be reproduced. For example, the
text "Pacific Ocean' may be required for graphic display on a map,
and may therefore be encoded as a text string, even though it is
also being stored as an attribute of a face in a hydrographic
coverage. Text primitives do not participate in topology.

5.2.2.2 Feature classes. Features are defined using -
primitive and attribute tables by means of relational modeling.

Tables are related to each other by their common keys. The
relationships between tables are determined by the product
specification.

5.2.2.2.1 Feature definition. A feature is represented by a

set of one or more primitives, a single row of attribute data in a
feature table which uniquely identifies the feature, and zero or
more rows of attribute data in other tables. A simple feature
(e.g., a building) may consist of one or more primitives of a
single type and a single row of attribute data. A complex feature
(e.g., an airport) will be identified by one row in a complex
feature table, but will include the additional information
contained in other feature tables.

Features are grouped into feature classes. Each feature class is
individually defined by a set of attributes (column definitions)
and is uniquely named. The rows of features in a feature class
collectively form the feature table for the feature class. Every
feature class has one and only one feature table. The feature
table is a special form of an attribute table because it directly
references a feature. TABLE 5 expresses the basic structure of a
feature table in VPF.

30

MIL-STD-2407

TABLE S. Feature table structure.

Primary Key Attributes
Either a primitive row Attributes as specified in the
identifier or feature product specification, or join‘
definition table id values for reference into other
(may be the table id). attribute tables.

5.2.2.2.2 Feature table joins. Simple features may be

composed of one or more primitives of a single type, while complex
features may be composed of one or more simple or complex
features. A feature join designates which primitives belong to
which features. Four types of feature joins represent all the
possible relationships between features and primitives: one-to-
one, many-to-one, one-to-many, and many-to-many. APPENDIX C
provides a detailed discussion of these four types of join <olumns
and feature join tables.

5.2.2.2.3 Feature class tvypes. There are two types of -

feature classes in VPF: simple feature classes and complex
feature classes. FIGURE 7 portrays the structural schema of these
feature classes.

a. Simple feature classes. A simple feature class
consists of a (logically) single primitive table and a single
simple feature table. There are four subtypes of the simple
feature class in VPF:

(1) Point feature classes (composed of entity or
connected nodes)

(2) Line feature classes (composed of edgesf
(3) Area feature classes (composed of faces)

(4) Text feature classes. A text feature class
consists of a text primitive table and a text feature table. The
text feature class is not a true feature class, but it is often
useful to process text as if it were a feature. For instance,
many maps contain text annotation that does not reference a
specific geographic entity. The text "Himalaya Mountains* may not
define any geometric primitive or feature, but merely provide
associative information for the viewer. Using a text feature
allows thematic queries on text just like other features. For
instance, if a text feature has a height attribute, software can
retrieve ‘all text with HEIGHT > 0.5’.

31

MIL-STD-2407

b. Complex feature classes. A complex feature class
consists of one or more simple feature classes, one or more
complex feature classes, or both, and a single complex feature
table, all within one coverage. For example, a complex watershed
feature may be constructed from simple features, such as rivers,
springs, and lakes.

Table
i
Complex
Join ‘ Feature
Join Table

i
J =1 —_

Y »]
Text Area Line Point
Feature Feature Feature Feature

4

' { { '

Join Table [7 Join Table I Join Table I Join Table l
X Node
Text Face Ring S Edge
Table ja->-) Connected JEntit

A 1

FIGURE 7. Feature class structural schema.

5.2.2.2.4 Constructing feature classes. A feature class
consists of a set of tables that includes at least one primitive
table and one feature table and optionally, join tables and
related attribute tables. The rules for constructing feature
classes are stored in the feature class schema table, which
describes how each table relates to each other table in the
feature class (TABLE 6).

32

MIL-STD-2407

TABLE 6. r las hem bl

Column Name Description
ID Required row id
FEATURE_CLASS Name of the feature class
tablel The first table name in the relationship
tablel_KEY Column name of table 1 join key
table2 The second table name in the relationship
table2_ KEY Column name of table 2 join key

TABLE 7 shows a feature class schema table and an example of a
simple feature class. Within the schema table, the feature class
is named TRNLINE. The first table in the relation is called
TRNLINE.LFT. The second table is named EDG, which is the standard
label for the edge primitive. The key column, ID, in TRNLINE.LFT
relates to the key column, ID, in EDG. TRNLINE.LFT has six
attributes: F_CODE, BOT, LEN, OHB, TUC, and FROM_TO. F_CODE,
BOT, LEN, OHB, and TUC are all feature attribute coding catalogue
(FACC) codes for a feature. FROM_TO, on the other hand, describes

the geometry of the feature (see section 5.3.3.1). The edge
primitive contains the required columns for level 2 topology (see
section 5.2.2.3.1). Appendix C provides additional information on

feature classes and feature joins.

33

MIL-STD-2407

TABLE 7. Feature class schema table and simple feature class

Feature class schema table

ID 1 2
FEATURE_CLASS TRNLINE TRNLINE
TABLE1l TRNLINE.LFT EDG
TABLE1_KEY ID ib

TABLE2 EDG TRNLINE.LFT
TABLEZ2_KEY 1D ID

Simple feature class

TRNLINE.LFT EDG
ID 1 < ID 1
F_CODE AQ040 START_NODE 4
BOT a END_NODE 2
LEN 9 RIGHT_EDGE 9
OHB 8 LEFT_EDGE 2
TUC 2 COORDINATES -97.706184,31.249201
FROM_TO 1 -97.706001,31.249952
-97.706001,31.250172
D 2 T) 2
F_CODE AQU40 | o | STARTNODE 4
BOT 0 END_NODE 5
LEN 5 RIGHT_EDGE 5
OHB 4 LEFT_EDGE 1
TUC 3 COORDINATES -97.706184,31.249201
FROM_TO -1 -97.702660,31.248232
o) 3
D 3 START_NODE 1
F_CODE AQ040 END_NODE 6
BOT 4 < »| RIGHT EDGE 7
LEN 7 LEFT_EDGE 8
OHB 2 COORDINATES -97.734131,31.250172
TUC 4 -97.734001,31.247892
FROM_TO 1 -97.733795,31.247061
-97.733360,31.246422

34

MIL-STD-2407

5.2.2.3 Coverage. A coverage is composed of features whose
primitives maintain topological relationships according to a level
of topology (level 0, 1, 2, or 3) defined for the coverage. All
of the file structures that make up a coverage are stored in a
directory or subdirectories of that directory. A coverage is
generally analogous to a photographic separate in conventional
cartography.

At the coverage level (see FIGURE 8), there are three mandatory
components: the primitive files or the subdirectories containing
those primitives, the feature tables, and the feature class schema
table. Value description tables must be used when implementing
coded attributes. A variable length index file is mandatory
whenever a variable length column is defined in a table. An MBR
is required for each face and edge table. Spatial indexes are
optional for each primitive table. A feature minimum bounding
rectangle table may be included for each feature table.
Maintaining a data quality table at the coverage level is
optional. Feature index tables may be used to support quick
retrieval of feature information for a selected primitive.

Feature class attribute tables are required to support feature
index tables. When tile directories exist, the primitive tables
are placed in the tile directories. Tile directories are
mandatory for a tiled coverage.

35

MIL-STD-2407

Data Value Feature
Quality Description Class
Table Tile and Tables 1 Schema
Primitive Frarure Table
Directories es

Narrative
—®~1 Table

)
‘ > Thematic
Index Q Optional

Mandatory

Feature
Index
FCA &

FIT

Variable-
Length

Index 2

1. mandatory when coded attributes are used
2. mandatory when variable length column is defined in a table

FIGURE 8. (Coverage copntents.

5.2.2.3.1 VPF topology. There are four recognized levels of
topology in VPF coverages, ranging from level 3, where all
topological connections are explicitly present, to level 0, where
no topological information is explicitly present. FIGURE 9
summarizes the characteristics of these levels and gives an
example of each. Since text does not have any topological
relationships, it is not listed in FIGURE 9. Text may be included
with other primitives at any topological level, even though it
does not have any topology. '

36

MIL-STD-2407

Level Name Primitives Description
3 Full Connected | The surface is part-
topology nodes, itioned by a set of
entity mutually exclusive
nodes, and collectively
edges, exhaustive faces.
and faces | Edges meet only at
nodes.

2 Planar Entity A set of edges and
graph nodes, nodes where, when

connected | projected onto a

nodes, planar surface, the

and edges | edges meet only at
nodes.

1 Non- Entity A set of entity nodes
planar nodes, and edges that may
graph connected | meet at nodes.

nodes,
and edges

0 Boundary Entity A set of entity nodes
represen- | nodes and edges. Edges
tation and edges | contain only
(spaghetti) coordinates, not

start and end nodes.
FIGURE 9. V. 1 in v

37

MIL-STD-2407

The columns carried in the edge and node tables, which determine
connectivity and adjacency for the topology, depend on the level
of topology. For instance, the edge table in TABLE 7 does not
contain the level 3 topology columns RIGHT_FACE and LEFT_FACE,
because faces do not exist in level 2 topology. TABLE 8 shows the
columns that are mandatory in each primitive table for the
required level of topology. The characteristics of these columns
are specified in the primitive definitions found in section 5.3.2.

TABLE 8. Columns reguired to define topology in VPF coverages.

Level Primitive Mandatory Columns

3 Face RING_PTR
3 Ring Table FACE_ID, START_EDGE
3 Edge START_NODE, END_NODE,

RIGHT_FACE, LEFT_FACE,
RIGHT_EDGE, LEFT_EDGE -

3 Entity Node CONTAINING_FACE
3-1 Connected Node FIRST_EDGE
2-1 Edge START_NODE, END_NODE,
RIGHT_EDGE, 1EFT_EDGE
2-0 Entity Node (none)
0 Edge none)

FIGURES 10, 11, and 12 use entity relationship (ER) diagrams to
portray the primitives and their relationships for each level of
topology.

38

MIL-STD-2407

Entity
Node Edge Text

' Coordinate ' [Coordinates) Shape Line

: VPF Primitive Table
Q Geometric
Column
‘ Contains

FIGURE 10. v 0 1

39

MIL-STD-2407

First
) Edge (— Edge

+ Right Edge " { start Node ‘—
') Connected

Node
.) Left Edge - End Node
1IIHHHHHHHHHIII
Text Entity
Node

VPF Primitive Table
Geometric Topologic
Column D Column

Topologic
Relation

Contains

il

FIGURE 11. Lﬂe_l_l_gnd_Lg\Le_L_mel_o.gx

40

Start
Edge

Ring H

MIL-STD-2407

Ring

Containing
Face

Pointer >- Face i

-0l

9

.+ Right Edge
+ Left Edge) -wgd

Entity

Node

Right Face 4 .
—h (Coordinate)

First
Edge () Edge

Y

Connected
Node

— D
e~ End Node

Text (Coord:.nate)
Shape Line

(Coordinates)

VPF Primitive Table : VPF Table

Geometric

Column

Contains

<:> Topologic
Column

Topologic
H Relation

FIGURE 12. Level 3 topoloav.

41

MIL-STD-2407

5.2.2.3.2 Value description tables. A value description

table (VDT) is provided to describe coded attributes. There are
three types of attribute values: distinct values, integer value
codes, and character value codes.

a. Integer value codes. In many cases, the values entered
in an attribute column are only codes designed to facilitate data
processing and transmission. Numerical codes and their
corresponding descriptions are maintained in the integer VDT.

b. Character value codes. For alphanumeric codes, there
is a character VDT similar to the integer VDT. For instance,
feature attribute coding systems generally use a five-character-
string feature coding scheme.

c. Distinct values. Distinct values are attribute values
that can be directly interpreted. Measurements of length or
elevation are examples of distinct values. The interpretation of
distinct values does not require a value description table.

5.2.2.3.3 Tiled coverages. Tiling is geographically
subdividing a coverage solely for the purpose of enhancing data
management; a coverage subdivided in such a manner is then
referred to as a tiled coverage. A tiled coverage contains the
same attribute information as an untiled coverage. The logical
interpretation of a tiled coverage is identical to that of an
untiled one. Each tile will be a separate subdirectory under the
coverage directory and contain separate primitive tables for those
features contained within the tile. A tiled coverage will contain
a single feature table for each feature class. Features in this
table are joined with their corresponding primitives using a
combination of tile ID and primitive ID. There should be no
subdirectory carried in a coverage directory for any tile that is
devoid of data in that coverage. However, the existence of face 1
justifies a tile subdirectory. Tiles do not contain feature
attribute or schema tables. These tables belong to the coverage
as a whole.

A tiled coverage is physically subdivided into tiles according to
a tiling scheme. The tiling scheme (tile boundaries and size of
tiles) and the handling of the features that lie on tile
boundaries and text primitives that cross borders are all defined
by a product specification. Each tile in a tiling scheme has a
unique tile identifier. FIGURE 14 shows a tiling scheme that uses
regular rectangular tiles. APPENDICES B (Winged-edge topology)
and D (Tiling) contain more information on tiling and its' impact.

Primitive definition occurs wholly within a tile. The following
paragraphs address the effect of tiling: :

42

MIL-STD-2407

(1) Edges: When an edge is broken by & tile boundary a
connected node is placed at the edge-tile intersection.
The identical (geographic coordinate) connected node occurs
in both tiles forming the boundary. All edges which lie
along a tile boundary, will have cross-tile topology. The
identical (geographic coordinates) edge occurs in both
tiles forming the boundary.

(2) Faces: A face broken by a tile houndary has a new edge
constructed and inserted at the boundary for each tile to
close the face internal to the tile. These edges take part
in cross-tile topology.

(3) Face 1: Face 1 (universe face) :epresents a special case
for tile boundaries. In those cases where face 1 is the
only face being broken, actual tile boundaries will not be
stored. For example, where face 2 is broken by the tile
boundary and the rest of the tile is defined by face 1,
only the tile boundary edges n~cessary to close face 2 are
stored (FIGURE 13).

(4) Connected Nodes: All connected -~ndes which lie on a tile
boundary will have cross-tile components (tile_id and
first_edge).

Two other situations to consider are that of a tile of a level 3
topology coverage which contain only point features or no

features. In these cases, the tile ¢ontains either entity node
primitives and face 1 or simply face 1, respectively. Level 3
topology requires inclusion of a face, ring, edge, connected node

and face bounding rectangle table, and &n edge variable lenght
index (TABLE 8). The face, ring and [s<e bounding rectangle
tables will reference the universe face (face 1) only. The edge
table must exist since it is refererced by the ring table. The
connected node table must exist since it is referenced by the edge
table. The existence of an edge table requires an edge variable
lenght index and the existence of a face table requires a face
bounding rectangle table. The edge and connected node table and
the edge variable lenght index will contain no records. For this
scenario the table appear as:

fac table
id | dnarea.aft_id ring_ptr
1 (NULL) 1

rng table
id fac_id start;édge
1 1 (NULL)

43

MIL-STD-2407

fbr table
ad X min y min X max Yy max
(null) (null) {(null) {(null)
-a@dg table

id | dnline.lft_id | sn{en|rf|1f | coordinates
(no records---header information only)

cnd table

id |dnpoint.pft_id| containing_face | first_edge | coordinate

(no records---header information only)

Note: Face 1 is the universe face. The
tile's edge file will only store edges
1,2, 3 and 4. The dached edges for the
universe face are implied, but not stored.

end table
id | dnpoint.pft_id| containing_face| coordinates -
1 1 1 37.5,-76.5
2 5 1 39.0,-80.0
r-——"=-—"—==-=== L
I
Face 1 '
|
2 |
|
l

44

MIL-STD-2407

Untiled
Coverage

/ile I%e I&/ﬁe ID/
Tiles -

‘//,/’?;e I&jfﬂgﬂﬁﬁzé nhiggggfﬁz; IDf//////,
‘//,/’?;e I%z;””?;e quég,gﬁ’iﬂe I&f/,////'

FIGURE 14. A tiling scheme.

5.2.2.3.4 Cross-tile kevs. VPF provides a mechanism for
maintaining geographic features in a logically continuous spatial
database, whether or not a tiling scheme is present. Since the
primitives in each tile of a tiled coverage are managed separately
from those in other tiles, labels given to primitives are unique
only within a tile. 1In order to support a logically continuous
spatial database, a triplet id can be used instead of an integer
key to reference primitives across multiple tiles. The triplet id
augments the key of a primitive with the key of the tile in which
the primitive falls. APPENDIX B contains a discussion that fully
describes this concept.

a. For an edge primitive, the triplet id is used to
maintain cross-tile topology. The Left Face, Right Face, Left
Edge, and Right Edge columns are defined as triplet'ids to support
tiled coverages. The triplet id contains a reference to the
internal topology within the current tile; the two other
components reference the external tile directory and the primitive
within that tile. For example, for a face divided by a tile
boundary, the external id portion of the Left Face field in FIGURE
15 would include the continuing face in the other tile. This
inclusion of internal and external tile references allows software
to detect tile borders and continue operations across boundaries

MIL-STD-2407

or to operate only within the current tile. If a coverage is
untiled, the Left Face, Right Face, Left Edge, and Right Edge
columns may be defined as integer columns; otherwise the external
tile id and primitive id sub-fields of the triplet id will not
exist (see 5.4.6.)

b. Cross-tile topology only occurs between tiles within
a library. Cross-tile components will only be populated for edges
intersecting tile boundaries within a library. Edges on tile
boundaries which coincide with library boundaries will not have
cross-tile components populated.

o Node
s Edge
3 Face
MJ12 Tile

smee Tile boundary

FIGURE 15. Face cross-tile matching.

5.2.2.4 Librarv. A library is a collection of coverages
that share a single coordinate system and scale, have a common
thematic definition, and are contained within a specified spatial
extent. If any of the coverages composing the library are tiled,
then all other coverages must either use the same tiling scheme,
or be untiled. The contents and organization of the libraries are
determined by a product specification. All of the tables and
coverages making up the library are contained within a single
master directory (FIGURE 16).

46

MIL-STD-2407

| | I I

GAZETTE Coverage Library Geographic
Names Coverages Attribute Header Reference
Reference Table Table Table

Coverage

LIBREF
Reference
Coverage

TILEREF Data Registrati Diagnosti
Reference Quality Reference Point Point
Coverage Table overage Table Table

Y

Mandatory

* Directory -

FIGURE 16. Library directory.

5.2.2.4.1 Tile reference coverage. A tile reference
coverage is mandatory if a library contains tiled coverages. The

spatial extent of the library and its tiling scheme are
represented in the tile reference coverage. A library can not
contain partial tiles. This reference coverage contains a set of
faces and area features identifying the tiles that the library
uses to subdivide the region of interest. The universe face
always has a face id that equals one. The inner ring for face 1
in TILEREF defines the library's spatial extent. For irregularly
shaped libraries, this will be a smaller total area than the
bounding rectangle defined in the LAT. The tile reference
coverage is a standard untiled coverage with level 3 topology.

5.2.2.4.2 Librarv attributes. General information about a

library is stored in the library header table. There is one
primary attribute row per library, and zero or more other
attribute rows. Libraries are also the level at which coverage
attribute tables reside. The coverage attribute table identifies
the coverages found in a library.

5.2.2.4.3 Librarv coordinate svstem. The coordinate system
of a library is defined by a geographic reference table. This

table defines the basic coordinate system for the library.
Extensions to the basic coordinate system may be provided by a
product specification.

47

MIL-STD-2407

An example of a geographic reference table would document the
projection used, its base parameters, and the values used to
define the size of the Earth. This information (values for the
semi-major and the semi-minor axis of an ellipsoid, other
projection datum information, the false origin of a projection,
and so forth) is necessary to understand a coordinate system in a
VPF library.

5.2.2.4.4 Library reference coverage. When tiles exist in

the library, a library reference coverage must exist. This
coverage is spatially registered to the tile reference coverage to
provide a preliminary view of the data contained within the
library to use for such functions as *"zoom out.* The contents of
this coverage will be a generalized map of the coverage considered
to be most significant to the library. For example, if a library
contains the rivers, transportation, and political boundaries of
the Australian continent, a generalized map of the political
boundaries might be considered appropriate for the library
reference coverage.

5.2.2.4.5 Data guality reference coverage. It is possible
to include a data quality coverage at the library level. This

coverage is spatially registered to the tile reference coverage.
Its purpose is to record data quality information that pertains to
the entire library. Appendix E contains more detailed information
about the contents of this coverage.

5.2.2.4.6 Names reference coverage. The names reference

coverage provides the user with a way to locate a place in a
library by using a place name. This is a special type of thematic
query. The most common use of the names reference coverage is to
enter a query string (for instance "London"), have the software
locate all the places that are "London,® and display their
geographic locations and names on the display device. The name
feature class contains a point feature table and an entity node
primitive table.

5.2.2.5 Database. A database is a collection of related
libraries and additional tables. The library attribute table acts
as a table of contents for the database. Database transmittal
information is contained in a database header table. Database
level data quality information can be maintained in the data
qQuality table. Appendix E contains more detailed information
about the content of this table. FIGURE 17 illustrates the
arrangement of database tables and coverages.

MIL-STD-2407

Library Database
Libraries Attribute Header
Table Table

Data

Quality
Table

Mandatory

‘ Directory

FIGURE 17. Database directorv.

5.2.3 Data gualjtv. VPF allows for the storage of data
quality information to permit the evaluation of the data for
particular applications. Although the exact form of the data
quality information supplied for a database is set by a product
. specification, VPF supports incorporation of data quality
information at each structural level in the database. Data
quality information may be stored at any VPF level. When it
exists at a given level, it applies to all data at or below that
level. However, when data quality information exists at multiple
levels, the information stored at lower levels always takes
precedence over that at the higher levels.

5.2.3.1 ZIvpes of data gqualityv information. A VPF database
may contain seven types of data quality information: source,
positional accuracy, attribute accuracy, date status, logical
consistency, feature completeness, and attribute completeness.
Definitions of these quality types are provided in appendix E.
The extent of data quality information contained in a product and
the types of data qguality to be included are determined by the
product specification.

5.2.3.2 Data guality encodinag. Data quality information can
be represented as an attribute or as a coverage. In the case of
attributes, data quality information may be added to an existing
VPF table, stored in a separate table, or stored in the data
quality table discussed in section 5.3.7. APPENDIX E describes
data quality encoding in more detail. :

49

MIL-STD-2407

5.3 Implementation. The following paragraphs describe the
implementation requirements of the VPF data structures.
Discussion covers the primitive, feature class, coverage, library,
and database levels. A description of a data quality table and
the narrative table is also provided.

5.3.1 General implementatjon information. In order to fully

explain the content of each data structure, each table is given a
text description, definition table, and an example.

5.3.1.1 Table definitions. These column descriptions define
the contents of each table. Each description example contains
five entries: column name, description, column type, key type,
and whether the column is optional or mandatory (Op/Man; see TABLE
12). The asterisk (*) in the column name item is a substitute for
an associated feature or primitive table name that is provided by
the product specification. *Null* in example tables refers to a
valid VPF null for that column type. Example tables may not
reflect the VPF requirement for consecutive row IDs. TABLE 9 is
an example of the table definition style.

TABLE 9. Table definition example.

Column Name Description Column Type Key Type Op/Man
iD Row id I P M
*.PFT_ID Feature id I N OF
CONTAINING_FACE |[Face containing the entity I N M3

node
FIRST_EDGE (Null) X N (o]
COORDINATE Coordinates C N M

Schema descriptions identify the following columns.

a. Column type. The column type column in the definition
table expresses the type of data the column must contain. The
encapsulation of these types is discussed in additional detail in
section 5.4. For the purposes of this section, TABLE 10
identifies field types. When the number of elements is not
specified as part of a column type definition described in this
document for any VPF table header, it is assumed to be 1.

b. Key type. VPF provides three key types. They are
primary keys, unique keys, and non-unique keys. Columns
identified as non-unique in this document may be changed to unique
by a product specification. TABLE 11 lists the key types and the
codes used in table definitions. Any primary key may be referred
to as a foreign key in another table.

50

MIL-STD-2407

TABLE 10. Column tvpes.

Column Type Description

T,n Fixed-length text

T, * Variable-length text

L,n Level 1 (Latin 1 - 1SO
8859) Fixed-length text

L* Level 1 (Latin 1 - ISO
8859) Variable-length
text

N,n Level 2 (Full Latin -
ISO 6937) Fixed-length
text

N* Level 2 (Full Latin -
ISO 6937 Variable-length
text

M,n Level 3 (Multilingual -
ISO 10646) Fixed-length
text

M* Level 3 (Multinlingual -

ISO 10646) Variable-
length text

F Short floating point
R Long floating point
s Short integer

I Long integer

c,n 2-coordinate array
short floating point
c,* 2-coordinate string
short floating point
B,n 2-coordinate array
long floating point
B, * 2-coordinate string
long floating point
Z,n 3-coordinate array
short floating point
Z,* 3-coordinate string
short floating point
Y.n 3-coordinate array
long floating point
Y, * 3-coordinate string
long floating point
D Date and time

X Null field

K Triplet id

Note: The asterisk (*) indicates variable-
length string. n indicates a fixed-length
array; n is defined by the product
specification. The product specification

can change columns of type * to n. Type
characters are case sensitive when used in table
definitions. .

51

MIL-STD-2407

TABLE 11. Kev Lvpes.

Key Description
p Primary key
U Unique key
N Non-unique key
c. Optional/mandatory. The optional/mandatory column indicates
For

whether the column is optional or mandatory for a VPF table.
there are several mandatory conditions, as shown in

each column,

TABLE 12. The code OF is used on a primitive table when direct
pointers to the feature table are desired to improve performance.

TABLE 12. Optional/mandatorv conditions.

Code Description
0 Optional
OF Optional feature pointer
M Mandatory
M<n> Mandatory at level n topology (0-3)
MT Mandatory if tiles exist

52

MIL-STD-2407

5.3.1.2 Reserved table pames and extepsions. Each VPF

table name consists of a reserved name or suffix extension. TABLE
13 lists the tables whose names cannot be modified or changed.

There are a few reserved directory names at the library and
database levels. These names are listed in TABLE 14.

In a coverage directory, there are many feature class tables that
have reserved suffixes. The product specification may define any
eight-character prefix, following the naming conventions detailed
in section 5.4.5. TABLE 15 lists the table suffixes.

TABLE 13. Reserved file names.

File Name : Description
cat Coverage Attribute Table
cnd Connected Node Primitive
csi Connected Node Spatial Index
dht Database Header Table -
dqgt Data Quality Table
ebr Edge Bounding Rectangle
edg Edge Primitive
end Entity Node Primitive
esi Edge Spatial Index
fac Face Primitive
fbr Face Bounding Rectangle
fca Feature Class Attribute Table
fcs Feature Class Schema Table
fsi Face Spatial Index
grt Geographic Reference Table
lat Library Attribute Table
lht Library Header Table
nsi Entity Node Spatial Index
rng Ring Table
txt Text Primitive
tsi Text Spatial Index
char.vdt Character Value Description Table
int.vdt Integer Value Description Table

53

MIL-STD-2407

TABLE 14. ixr o n
Directory Name Description
libref Library reference coverage
dq Data quality coverage
tileref Tile reference coverage
gazette Names reference coverage
TABLE 15. Reserved table pame extensions.
File Name Suffix Description

.abr Area Bounding Rectangle Table

.aft Area Feature Table

.ajt Area Join Table

.ati Area Thematic Index

.Cbr Complex Bounding Rectangle Table

.cft Complex Feature Table

.cjt Complex Join Table

.cti Complex Thematic Index

.doc Narrative Table

.dpt Diagnostic Point Table

it Feature Index Table

fei Feature Index Table Thematic Index

Jjti Join Thematic Index

.1br Line Bounding Rectangle Table

Jft Line Feature Table

.13t Line Join Table

.1ti Line Thematic Index

.pbr Point Bounding Rectangle Table

.pft Point Feature Table

.pjt Point Join Table

.pti Point Thematic Index

.rat Related Attribute Table

.rpt Registration Point Table

.tft Text Feature Table

.tti Text Thematic Index

Any table that contains variable-length records must have a
associated with it. The index file shall
have the same file name as the table, except that the last

For example, a variable-length
record road line table, ROAD.LFT, would have a variable-length
index ROAD.LFX. The one exception to this convention is for the

variable-length index

character will end with *X.*

FCS, whose variable-length index shall be named FCZ.

54

MIL-STD-2407

5.3.2 Primitives. As discussed in section 5.2.2.1,
there are three types of geometric primitives in VPF: nodes,
edges, and faces. There are two classes of nodes, the entity node
and the connected node. In addition, text is used as a
cartographic primitive. These four primitives, with the addition
of feature tables, allow the modeling of geographic phenomena
requiring vector geometry. FIGURE 18 illustrates the various
types of primitives. Columns can only be added to primitive
tables to handle SOURCE, POSITIONAL ACCURACY, UP-TO-DATENESS,
SECURITY, and RELEASABILITY.

55

MIL-STD-2407

R R R I SRR ¢

B RN R aontek

33 308 2 X

eyt odeyde

R

%k
R

=
muxxx R !
£
&

»

A%
EEEEE
8

e 00 M o M o e 2k

%
N

lxx? &x

X
" X%

EEEEE R : wa

%X

%xd ot

X3

e
"!;l X X

X X XX XHKK XX

% xS

Fy
by
s
%
o
%
%
¥
s
§§
§§

b
347

343
330

345
331

334

344

348

Qo
<y N

xx8
%

346

352

336

333

ot
355

~é§?
357
342

356

337

359

341

354
361

Ll
n
(3}

340
35
343

35
338

364 ,Connected node

1o Entity node

39BEdge

1 Face

Therefore only a subset of

This FIGURE represents a partial database.

(Note

1lly

primitives are shown.

A complete set of primitives would have sequentia

numbered IDs beginning with 1.)

FIGURE 18.

56

MIL-STD-2407

5.3.2.1 Node primitives. Two types of node primitives are

implemented:

nodes, which occur only at edge ends.

dimensional locations.

a. Entity node primitive.

composed of three columns:

table) key,

and the node coordinates.

entity nodes, which are free floating, and connected
Both represent zero-

The entity node primitive is
a primary key, a foreign (to the face
The FIRST_EDGE null column

is included to maintain compatibility with the connected node

primitive so that the formats for both classes of node primitive
The CONTAINING_FACE column is only
required for level 3 topology to maintain a topological
relationship to the face that contains the node.

conceptually remain the same.

the meaning of the entity node primitive.

TABLE 16 defines

TABLE 17 illustrates an

entity node table; the entity nodes described are those in FIGURE

18.

TABLE 16. Entity node definition.

Column Name Description Column Type Key Type Op/Man
ID Row id I P M
* . PFT_ID Feature id I N OF
CONTAINING_FACE | Face containing the I N M3

entity node

FIRST_EDGE (Null) X N (o]
COORDINATE Coordinates C/Z/B/Y N M
Note: The asterisk (*) indicates a placeholder for the point feature class

name.

TABLE 17. Entity node records.
Column Name Contents
ID 1
DNPOINT.PFT_ID 936
CONTAINING_FACE 2
FIRST_EDGE Null
COORDINATE 10.56 37.91
ID 2
DNPOINT.PFT_ID 937
CONTAINING_FACE 2
FIRST_EDGE Null
COORDINATE 10.36 37.72
ID 3
DNPOINT.PFT_ID 953
CONTAINING_FACE 2
FIRST_EDGE "Null
COORDINATE 10.15 37.86

57

MIL-STD-2407

b. Connected node primitive. The connected node primitive is
composed of three columns: a primary key, a foreign key (to the
edge table), and the node coordinates. The CONTAINING_FACE null
column is included to maintain compatibility with the entity node
primitive. The FIRST_EDGE column is a foreign key required for
level 1 and higher topology levels to maintain a topological
relationship to the edges that include the node. The complete set
of edges around a connected node may be assembled by following the
topology of the connected node until the first edge reappears.
Refer to APPENDIX B for more discussion of this algorithm. A
connected node table is required for any coverage of topology
level 1-3 containing an edge table. If the optional feature
pointer is used, connected nodes that are not features will carry
a null in that field. TABLE 18 defines the connected node
primitive. TABLE 19 illustrates a connected node table with data
for four of the connected nodes shown in FIGURE 18.

TABLE 18. Connected node definition.

Column Name Description Column Type Key Tvpe Op/Man
ID Row id I P M
* PFT_ID Feature id I N OF
CONTAINING_FACE (Null) X N 0]
FIRST_EDGE Edge id K/1 N M1-3
COORDINATE Coordinates C/Z/B/Y N M

Note: The asterisk (*) indicates a placeholder for the point feature class
name.

TABLE 19. Connected node records.

Column Name Contents

ID 343
DN.PFT_ID 42
CONTAINING_FACE Null
FIRST_EDGE 330
COORDINATE 10.63 37.72
ID 344
DN.PFT_ID Null
CONTAINING_FACE Null
FIRST_EDGE 333
COORDINATE 10.49 37.73
ID 345
DN.PFT_ID Null
CONTAINING_FACE Null
FIRST_EDGE 330
COORDINATE 10.61 37.80

58

MIL-STD-2407

5.3.2.2 Edge primitive. The edge primitive table includes
up to eight mandatory columns, depending on the level of topology.
The mandatory ID column contains the row id and is the primary
key. The start_node and end_node columns are foreign keys to the
connected node primitive and are mandatory for levels 1-3. The
right_face and left_face columns are foreign keys to the face
table and are mandatory for level 3 topology. The right_edge and
left_edge columns are foreign keys to the edge table and are
mandatory for levels 1-3. The coordinates column is mandatory.
For simplicity in drawing edges, the coordinate string includes
the node coordinates at each end, regardless of the existence of a
connected node primitive. Thus, the minimum length of the
coordinate string is two pairs. APPENDIX B describes winged-edge
topology in more detail.

a. Node information. The foreign keys to the connected
node table are required for level 1 and higher topology levels to
maintain a topological relationship to the node connected to the
edge. The start node indicates the beginning of the edge, -and the
relationship of the start node to the end node defines the edge
orientation.

b. Edge information. Two foreign keys, right and left
edge, are required for level 1, 2, and 3 topology, establishing
connectivity between each edge and its neighboring edges in the
coverage network. The right and left edges establish winged-edge
topology for both line networks and faces. If all the edges
incident at a node are sorted according to the bearing each edge
radiates from that node, the right edge of a particular edge is
the first edge encountered, counterclockwise in the sort order,
around the end node of that particular edge. Similarly, the left
edge is the first edge encountered around the start node.

c. Face information. When faces are present, the right
and left face columns are added to the edge primitive table.
Depending on the edge direction, the face columns are assigned.
When a face is split by a tile boundary, the internal tile
boundary is used to close the face on each tile. The tile id and
external face id are also maintained in the triplet id.

TABLE 20, defines the edge table. TABLE 21 illustrates an edge
table created from data shown in FIGURE 18.

59

MIL-STD-2407

TABLE 20. Edge table defipnition.

Column Name Description Field Type Key Type Op/Man

ID Row id I P M

** LFT_ID Feature id I N OF

START_NODE Start node id 1 N M1-M3

END_NODE End node id 1 N M1-M3

RIGHT_FACE Right face id K/1 N M3

LEFT _FACE Left face id K/I1 N M3

RIGHT_EDGE Right edge id K/1 N M1-M3

from end node
LEFT_EDGE Left edge id K/1 N M1-M3
from start node
COORDINATES Coordinates c/2/B/Y,* N M
Note: The (**) indicates a placeholder for the line feature class name.
TABLE 21. Edge record example.
Coordinates
iD LINE SN EN RF LF REd LEd Start Node...End Node
328 24500 | 346 362 3 2 339 334 11046 37.38...10.68 37.00
329 24502 | 346 360 2 3 338 328 | 10.46 37.38...10.06 37.09
330 24505 | 343 345 2 2 330 330 J10.63 37.72...10.61 37.80
331 24524 | 348 347 2 2 331 331 {1053 37.93..10.58 37.53
332 24534 | 349 349 4 2 332 332 |10.26 37.36...10.26 37.36
333 24569 | 344 350 2 2 333 334 |10.49 36.73...10.20 36.94
334 24573 | 344 346 2 2 329 333 | 10.49 36.73...10.46 37.38
335 24575 | 353 | 351 2 2 335 335 110.18 36.38...10.20 36.73
336 24581 352 352 2 5 336 336 | 10.20 36.81...10.20 36.81
337 24585 | 357 357 2 6 337 337 | 10.15 36.46...10.15 36.46
338 Null 360 362 2 1 328 339 | 10.06 37.09...10.68 37.00
339 Nutl 360 362 1 3 338 329]110.06 37.09...10.68 37.00
340 24601 354 358 2 2 343 340]10.13 36.72...10.04 36.78
, 341 24603 | 359 359 2 7 341 341 |10.04 36.61...10.04 36.61

342 24612 | 355 356 2 2 342 342]10.10 36.40...10.02 36.50
343 24626 | 361 358 2 2 340 343 | 10.02 36.71...10.04 36.78

Note: LINE = **.LFT_ID, SN = START_NODE, EN = END_NODE, RF = RIGHT_FACE,
LF = LEFT_FACE, REd = RIGHT_EDGE, LEd = LEFT_EDGE. Only start and end node coordinates
are shown, atthough all coordinates would actually be present in this variable-length column.

60

MIL-STD-2407

5.3.2.3 Face primitive. Faces are defined as planar regions
enclosed by an edge or a set of edges. All faces are defined by
one or more rings, which are connected networks of edges that
compose the face border. Each ring starts with a reference to a
particular edge, and is defined by traveling in a consistent
direction. Then the left and right edge columns on the edge -
primitive are traversed, always keeping the face being defined on
one side, until the ring returns to its starting edge. All faces

must have one and only one outer ring, which bounds the exterior.
A face may require inner rings to represent areas belonging to
other faces that it encloses totally. Inner rings and outer rings
are disjointed. There is no upper limit on the number of inner
rings. A ring table (see below) is defined to handle these
disjointed rings. A ring within a ring contained within a face
(e.g., a lake within an island which is contained within a larger
lake) has no direct topologic relation to the outer face (the
larger lake). Face primitives are implemented as follows.

a. Face table. The face table contains two columns, where the
primary key id identifies the face and the RING_PTR column points
to the outer ring in the ring table. Face id 1 is always reserved
for the universe face in a face table; it will never correspond to
a feature in the feature table. The universe face contains a
point at infinity. The outer ring of the universe face is a
topological artifact which does not have a geometric
representation. The outer ring cannot be displayed. The common
boundary between the universe face and all other faces constitutes
the inner ring or rings of the universe face. Inner rings of the
universe face behave the same as the rings of other faces. TABLE
22 defines the face table. TABLE 23 depicts an example of the
face table for three faces from FIGURE 18.

TABLE 22. Face table definition.
Column Name Description Column Type Key Type Op/Man
ID Row id I P M3
* AFT_ID Feature id I N OF
RING_PTR Ring id I N M3
Note: The asterisk (*) indicates a placeholder for the area feature

class name.

61

MIL-STD-2407

TABLE 23. Face record example.

Column Name Contents
ID 1
DNAREA AFT_ID Null
RING PTR 1
ID 2
DNAREA.AFT ID 4571
RING PTR 2
ID 3
DNAREA.AFT_ID 4572
RING PTR 3

b. Ring table. The ring table contains one reference to the
edge table for each ring of a face. The first row in the ring
table for each face refers to the outer ring of that face.

Because the outer ring for face 1 (universe face) is a topological
artifact, its start edge will be null. Outer rings are traversed
in clockwise direction. Each inner ring has one reference to a
first edge on that ring. The ring table maintains an order
relationship for its rows. The first record of a new face id will
always be defined as the outer ring. Any repeating records with
an identical face value will define inner rings. TABLE 24 defines
ring table structure, and TABLE 25 depicts three rings from FIGURE
18 and follows the face example in TABLE 23.

TABLE 24. Ring table defipition.

Column Name Description Pleld Type Key Type Op/Man
ID Row id I P M3
FACE_ID Face id I N M3
START_EDGE Edge id I N M3

62

MIL-STD-2407

TABLE 25. Ring record example,

Column Name Contents
ID 1
FACE_ID 1
START EDGE Null
ID : 2
FACE_ID 2
START EDGE 338
ID 3
FACE_ID 3
START EDGE 329

5.3.2.4 Text primitive. Text is implemented to allow the
representation of names associated with vague or ill-defined
regions, such as the Appalachian Mountains. The text primitive is
normally composed of three items: a primary key, the text string,
and a coordinate string defining a shape line. Optional
attributes may also be associated with the primitive, such as text
color or font height.

The shape line must contain at least one coordinate pair. If the
shape line contains only one coordinate pair, the coordinate pair
is considered to represent the lower left coordinate, and the
default orientation for the shape line will be assumed (minimum
readable text and parallel to X axis.) In order to specify
orientation, two coordinate pairs must be entered. The second
coordinate pair defines the lower right of the string. Some fonts
have ascenders and descenders that extend above or below the shape
line. Third and subsequent coordinate pairs define control points
in a shape line. The control points of a shape line define a
continuous function. Characters in a text string are individually
oriented along the shape line.

Table 26 defines the text primitive table structure. TABLE 27 is
a hypothetical example of a text primitive table.
TABLE 26. ZText primitive structure table.

Column Name Description Column Type Key Type Op/Man
iD Row id 1 P M
** TFT_ID Feature id I N OF -
STRING Text string T/L/M/N, * N M
SHAPE LINE Coordinates C/Z/B/Y,* N M
Note: The (**) indicates a placeholder for the text feature class name.

63

MIL-STD-2407

TABLE 27. Text primitive record example.

Column Name Contents

ID 1

DNTEXT.TFT__ID 529

STRING Fiume Salso

SHAPE_LINE 14.41,37.74 14.45,37.73

: 14.52,37.69 14.60,37.69

ID 2

DNTEXT.TFT_ID 530

STRING Simeto

SHAPE_LINE 14.80,37.71 14.81,37.68
14.80,37.66 14.81,37.65

1D 3

DNTEXT.TFT_ID 531

STRING Belice

SHAPE_LINE 12.91,37.69 12.93,37.71
12.95,37.73

1D 4 ~

DNTEXT.TFT_ID 532

STRING Dittaino

SHAPE_LINE 14.51,37.56 14.54,37.55
14.58,37.56 14.62,37.57

5.3.2.5 Minimum bounding rectangle table. A minimum
bounding rectangle record is required for each record in an edge
or face primitive table. Since the outer ring of the universe
face is a topological artifact which does not have a geometric
representation, the FBR record for face 1 should contain nulls for
XMIN, YMIN, XMAX and YMAX. The definition found in TABLE 28 is
used for both the face and edge minimum bounding rectangle tables.
TABLE 29 is an example of the face minimum bounding rectangle
table used for FIGURE 18. The MBR table definition is applicable
to both edge and face primitives.

TABLE 28. Minimum bounding rectangle defipition.

Column Name Description Column Type Key Type Op/Man
D Row id 1 P M
XMIN Minimum X coordinate F/R N M
YMIN Minimum y coordinate F/R N M
XMAX Maximum x coordinate F/R N M
YMAX Maximum y coordinate F/R N M

64

MIL-STD-2407

TABLE 29. Face bounding rectangle record example.

Column Name Contents
1D 1l
XMIN Null
YMIN Null
XMAX Null
YMAX Null
ID 2
XMIN 12.31
YMIN 37.97
XMAX 13.31
YMAX 37.99
ID 3
XMIN 14.54
YMIN 37.83
XMAX 14.58
YMAX 37.85 -

5.3.3 Feature class. A feature class is composed of a
variety of tables containing geometric, topologic, and attribute
data. Complex feature relationships can be defined. Some
features may require a single feature and an associated primitive
table, while others may need multiple tables linking features into
a complex hierarchy. Attribute data may be extended by the use of
related attribute tables (rat). A feature minimum bounding
rectangle table may be included for each feature table as defined
in TABLE 28. The feature class definition is provided by a
product specification.

Constructing feature classes requires the use of feature tables.
If necessary, the feature class definition may require the use of
a feature join table to accurately construct the feature in
relational form. Appendix C describes feature class relationships
in greater detail.

5.3.3.1 Feature tables. A feature table consists of a
feature identifier and one or more attribute columns. TABLE 30
defines feature table contents for non-compound features. If the
coverage is tiled, the feature table maintains a triplet id column
that identifies the tile id and primitive id that are related to
the feature. This column is named after the primitive table it
relates to, followed by *_ID.* The tile id and the primitive id
can be stored in separate columns. The tile id column is named
TILE_ID. FROM_TO is an optional column used to provide
directionality of a line feature with respect to its edge
primitive(s). A FROM_TO value of 1 means the feature has the same
orientation as its related primitive(s); a -1 means opposite

65

MIL-STD-2407

orientation.
TABLE 30. Feature table definition.

Column Name Description Column Type Key Op /Man
ID Row id I P M
TILE_ID Tile id s N MT2

«_1pl Primitive id S/I/K N M
<Attribute n> | (attribute description) Any Any Mé
FROM_TO Line feature orientation s N o3

Notes: 1. The asterisk (*) indicates a placeholder for the
primitive table name: EDG, FAC, END, CND, or TXT. If a join table
exists, the TILE_ID, FROM_TO and *_ID columns will be found there.

2. If primitive id column is of type K, then no tile
reference id column is required.

3. Optional for line feature tables only.

4. A minimum of one attribute is required for any table. 1If the table
does not contain tile_id and/or *_id columns, an attribute will be mandatory
for this column. Any additional attributes are optional.

All feature class definitions fall into one of five categories:
area, line, point, text, and complex features.

a. Area feature. An area feature is composed of one or
more face primitives. The primitive id column name will be
FAC_ID. For instance, a vegetation feature will be defined by
face primitives and will have various descriptive attributes (such
as canopy closure, stem diameter size, and vegetation type
category).

b. Line feature. Line features are composed of one or
more edge primitives. The primitive id column name will be
EDG_ID. A river feature could contain the following attributes:
hydrographic category, depth, and width.

c. Point feature. A point feature class contains node
primitives. The primitive id column name will be END_ID or
CND_ID. For instance, a dam feature class may contain many
attributes, such as height, length, and width.

d. Text feature. A text feature class is composed of a
text primitive. The primitive id column name will be TXT_ID. The
text feature usually contains additional attributes, such as text
color, font, and font size.

e. Complex feature. Complex features can be constructed

from any features. Complex features, however, cannot be
recursively defined.

66

MIL-STD-2407

5.3.3.2 Feature -Hoin tables. Join tables are used to

implement one-to-many relationships and/or many-to-many
relationships between tables. They allow a variety of constructs
to be made: between a feature table and a primitive table,
between feature tables (for complex features), and between a
feature table and an attribute table. A join table is used to
relate one column in a table with a column in a second table..
This is common when a 1:N relationship exists between two tables.
Thus, for example, if a complex feature has four 1:N relations
with four simple feature classes, four join tables will be used.
The content and number of join tables depend on the coverage
design and is defined in the Product Specification. The feature
class schema table (fcs) documents all of the relationships for
each feature class.

Unlike the feature table format that is dependent on the category
(area, line, point, text, and complex), the same join table format
is applicable to all feature classes. In the description below, a
feature to primitive join relationship is modeled using the
structure presented in TABLE 31. Together with the Feature Class
Schema (FCS) table, this table structure can be utilized to
represent other relationships; such as, relationships defined
among features, among primitives, and so forth. Since joins are
fully described in the FCS, there is usually no predetermined
requirement on the join table columns. Furthermore, unless one of
the tables in the join relation is a primitive table in a tiled
coverage, the Tile_ID column is generally not necessary. TABLE 31
defines join table contents. The second column contains the key
of the first table in the join. The name of this column

is the table's name followed by *_ID.* The third column contains
the key of the second table in the join; it is similarly labeled
using the table name and the *“_ID" suffix. For instance, in a
feature table (SDRPOINT.PFT) relating to a primitive (END), the
key for the first table is SDRPOINT.PFT_ID and the key for the
second table is END_ID. The feature class schema table is used to
express the column names for the join table. The TILE_ID column
is mandatory when tiled directories exist in the coverage and the
join table relates a feature table and a primitive table. Refer
to section 5.3.3.3 concerning these columns when tile directories
exist in the coverage.

67

MIL-STD-2407

TABLE 31. Join table defipition.

Column Name Description Column Type Key Op/Man
ID Row id I P M
«_1pl Table 1 id I N M
TILE_ID Tile id S N MT/03
es_1p2 Table 2 id 1/S/K N M
FROM_TO Line feature [N o4

orientation

Notes: 1. The asterisk (*) indicates a placeholder for the

name of the first table in the join, usually a feature table name.

2. The (**) indicates a placeholder for the table name of
the second table in the join, usually one of EDG, FAC, END, CND,
or TXT.

3. If primitive id column is of type K, then no tile
reference id column is required. Tile_id is also not required if
this is a join between two feature tables, as in complex features,
or between a feature table and an attribute table.

4. Optional for line features only.

5.3.3.3 -to- .
If the coverage is tiled, the feature or join table maintains a
triplet id column that identifies the tile id and primitive id
that are related to the feature. Alternatively, the tile id and
the primitive id can be stored in separate columns. The triplet
id column is named after the primitive table it relates to,
followed by *_ID.* The first field in the triplet id is null.
The second field is the tile id (found in the tile reference
coverage); the third field is the primitive row id in that tile.
If the relation between the primitive and the feature is made
using a join table, then this information will be stored in the
join table unless it is stored in the feature table.

5.3.4 Coverage. Each coverage has one set of topological
primitives and a collection of feature tables based upon these
topological objects. All these tables are stored in one directory
and are associated by file naming conventions (see TABLE 15). The
coverage may contain a data dictionary for all feature tables in
the coverage. An optional data quality table is allowed at the
coverage level.

5.3.4.1 Coverage relationships. The general description of

a coverage is stored in the coverage attribute table of its
library. The relationships between the tables in a coverage are
described by the mandatory feature class schema table.

5.3.4.2 Feature class schema table. A feature class schema

68

MIL-STD-2407

table defines the feature classes that are contained within the
coverage. Each record in the table specifies a feature class name,
the name of the two tables involved in the join, and the names of
the columns used in the join. The feature class name must be
repeated to specify all the relationships in the feature class
schema table. In the case of complex features, all relationships
defining the component features must be specified with the feature
class column referencing the complex feature class. This includes
relationships between simple features and their primitives, even
though these relationships are defined in other parts of the
feature class schema table. Paragraph C.4.7.3 of Appendix C
contains an example of relationships in a coverage with several
simple features and a complex feature that consists of one point
feature class and two line feature classes. The topological
relationships need not be specified, since they are implied by
table types. The feature class schema table must be used in
conjunction with the TILEREF area feature table to fully define
feature classes in tiled coverages.

If a key in the join is a compound key, the column names will be
listed, separated by a backslash character (\). For example, a
primary key composed of two columns would be specified as
*NAME\TYPE." TABLE 32 defines feature class schema contents, and
TABLE 33 is an example of a feature class schema table.

69

MIL-STD-2407

TABLE 32. Feature class schema definition.
Column Name Description Column Type Key Op/Man
1D Row id I P M
FEATURE_CLASS | Feature class name T/L/M/N, 8 N M
TABLE1 The first table in T/L/M/N,12 N M
a relationship
TABLE1_KEY Join column in the T/L/M/N,* N M
first table
TABLE2 The second table in T/L/M/N,12 N M
a relationship
TABLE2_KEY Join column in the T/L/M/N, * N M
second table
TABLE 33. Feature class schema example.
Column Name Contents
ID 1
FEATURE_CLASS SDRPOINT
TABLE1l SDRPOINT.PFT
TABLE1l_KEY 1D
TABLE2 END
TABLE2_KEY ID
ID 2
FEATURE_CLASS SDRPOINT
TABLE1l END
TABLE1l_KEY ID
TABLE2 SDRPOINT.PFT
TABLE2_KEY ID
ID 3
FEATURE_CLASS SDRAREA
TABLEl SDRAREA.AFT
TABLE1l_XEY ID
TABLE2 FAC
TABLE2_KEY ID
Ip 4
FEATURE_CLASS SDRAREA
TABLE1l FAC
TABLEl_KEY ID
TABLE2 SDRAREA.AFT
TABLE2 _KEY ID

5.3.4.3 Yalue description table. A value description table
relates to associated feature class tables within a coverage.
VDTs are required when coded attribute values are implemented
within a coverage. The two types of VDTs are integer VDT and
character VDT. There will be no more than one of each per
coverage. If a column in a feature table requires a VDT, then

70

MIL-STD-2407

every unique coded value will have an entry in the VDT. Certain

values (e.g., null or unknown) that are globally defined for all

columns may not appear in a VDT, however, they will be documented
in the product specifications. TABLE 34 defines the format of a

VDT, and TABLE 35 provides an example.

TABLE 34. Yalue description table definition.

Column Name Description Column Type Key Op /Man
1D Row id I P M
TABLE Feature table name T/L/M/N,12 N M
ATTRIBUTE Column name T/L/M/N,n N M
VALUE Unique attribute value | I/S/T/L/M/N,n N M
DESCRIPTION Attribute description T/L/M/N,* N M
TABLE 35. v ipti X .

Column Name Contents

ID 1

TABLE SDRPOINT.PFT

ATTRIBUTE MCP

VALUE 0

DESCRIPTION UNKNOWN

1D 2

TABLE SDRPOINT.PFT

ATTRIBUTE MCP

VALUE 18

DESCRIPTION CONCRETE

b §o) 3

TABLE SDRPOINT.PFT

ATTRIBUTE MCP

VALUE 23

DESCRIPTION EARTHEN

ID 4

TABLE SDRPOINT.PFT

ATTRIBUTE HYC

VALUE 0

DESCRIPTION UNKNOWN

1D S

TABLE SDRPOINT.PFT

ATTRIBUTE HYC

VALUE 6

DESCRIPTION NON-PERENNIAL

ID 6

TABLE SDRPOINT.PFT

ATTRIBUTE HYC

VALUE 10

DESCRIPTION TIDAL

5.3.5 Library. The function of a VPF library is to organize
collections of coverages that pertain to one geographic region.
Each library must manage its own spatial extent. VPF uses a

71

MIL-STD-2407

minimum bounding rectangle to define this geographic extent. VPF
also supports a coverage, the library reference coverage, which
describes the library region in a graphic manner. All reference
coverages must be spatially registered and be in the same
coordinate system.

Within each library, there are three mandatory tables and seven
optional tables. The library header table defines the contents of
the library. The geographic reference table contains information
pertaining to the geographic location of the library. A coverage
attribute table provides a list of and descriptions for the
coverages contained in the library.

If the library is tiled, there will be an untiled tile reference
coverage. There will also be an untiled library reference
coverage that gives a general overview of the information
contained in the library. 1In addition, it is possible to include
a data quality coverage. The format for the data quality and
library reference coverage follow the same rules as any normal VPF
coverage. See appendix E for information concerning recommended
data quality coverage contents. Multiple records in these tables
are used to describe multiple sources, updates and maintenance
issues.

5.3.5.1 Librarv header table. The library header table

contains information identifying the library, general information
about the contents, security, and source. TABLE 36 describes the
group of entities that compose the library header table.

72

MIL-STD-2407

TABLE 36. Librarv header table.

Colun Name Description of Cortert CoaumnType | Keylype

D Row id l
PRODUCT_TYPE Series designator of product type T2

LIBRARY_NAME Name of brary Ta2
DESCRIPTION Teod description of lbrary : T.100
DATA_STRUCT_CCDE Highest level code for the ibrary T

5 = Level 0 topology
6 = Level 1 topology
7= Level 2 topology
8= Level 3 topology
SCALE Sam;:zledtheharyae 200) | N M
using the representative fraction
denominator

SOURCE_SERES Series designator (6.g. 1501) T15 N M
SOURCED Source id - nurmber or name that when T30 N M
used in conjunction with the series
and edition will identity a unique

source . -
SOURCE_EDITION Source edition number T20 N
SOURCE_NAME Ful name of source document T,100 N

SOURCE DATE date. Adesigned date D N

m accurately descrbes the

basic date of the product for

con'pt.nanon of the probable

e cormpision e o e reision ca
or the revision date

or other depending on the product and

circumstances

Z2Z 2270

TZTZ

SECURITY_CLASS ity classification of the source T N M
T=TOP SECRET
ggs:msr
R= RESTRICTED (or alematively
FOR OFFICIAL USE ONLY
administrative classfication

U-LNG.@FIE)_
DOWNGRADNG nator’s permission for T, N
9gdlf‘vglngacingrequnred {yes or no) 3

DOWNGRADING,_DATE Date of downgrading (null ¥ answer to D N
previous entity is yes,

RELEASABLITY Releasability restrictions T2 N

5.3.5.2 gGeographic reference table. This table (TABLE 37)

contains four groups of fields that define the geographic
parameters of the library. These field groups are the geographic
parameters, projections, registration points table name, and
diagnostic points table name. The geographic parameters in this
table serve two purposes. Firstly, they are for descriptive
documentation of the coordinate reference system used in the
database. Secondly, they allow multiple separately published
libraries to be inversely projected into a common coordinate
system for display and query. If the database is maintained in

73

MIL-STD-2407

unprojected geographic coordinates, the projection code and its
corresponding projection parameters need not be included in the

table. (Refer to APPENDIX G for valid values in datum codes,
projection codes, and unit of measure codes.)
TABLE 37. Geographic reference table.
Column Narme Descripon of Corterts Field Type Key Type OpiVn
D Rowid | P M
DATA TYPE Type of data in the bbrary T3 N M
UNITS Units of measure code for coordinates T3 N M
n brary
H1PSOD_NAME Name of elipsoid of the brarv T18 N M
B8.LPSOD_DETAL Details about brary elig T50 N M
including ellipsoid code
VERT_DATUM_NAME Narme of vertical reference T.15 N M
VERT_DATUM_CCODE Code of vertical datum reference T4 N M
SOUND_DATUM NAME Name of sounding datum T15 N M
SOUND_DATUM OCDE Code of sounding datum reference T4 N M
GED DATUM_NAME Name of geodetic datum T1s N M
GEO DATUM CODE Cods of geodetic datum T4 N M
PROVECTION_NAME Name of the projection T20 N M
PROUECTION_CODE m of the m% ?\ra‘ytes) T2 N O
PARAVETER! M parameter 1 F N (o]
PARAVETER2 Projaction parameter 2 F N (o]
PARAVETERR Projaction parameter 3 F N (o}
PARAVETE Projection paramster 4 F N o)
FALSE_ORIGN_X Faise Easting origin of projection F N o
FALSE ORGIN_Y False Northing origin of projection F N O
FALSE_ORIGIN_Z False origin for Z values F N O
A by By |8
5.3.5.3 Coverage attribute table. This table contains the

coverage name and topology level for each coverage in the library.
Only those coverages which actually exist within a specific
library will be listed in that library's coverage attribute table.
The topological level associated with each coverage determines the
nature of geometric and topological information available on that
coverage. TABLE 38 defines coverage attribute table entities.
TABLE 39 is an example of a coverage attribute table.

74

TABLE 38.

MIL-STD-2407

-) ble definition.

Column Name Description Columh Type Key Typp Op/Man
ID Row id I U M
COVERAGE_NAME The coverage name T,8 P M
DESCRIPTION Description string T,* N M
LEVEL The topologic level I N M
TABLE 39. (Coverage attribute table example.

Column Name Contents

D 1

COVERAGE_NAME SLP

DESCRIPTION Surface configuration

LEVEL 3

ID 2

COVERAGE_NAME VEG

DESCRIPTION Vegetation

LEVEL 3

ID 3

COVERAGE_NAME SMC

DESCRIPTION Surface materials

LEVEL 3

ID 4

COVERAGE_NAME SDR

DESCRIPTION Surface drainage

LEVEL 3

1D 5

COVERAGE_NAME TRN

DESCRIPTION Transportation

LEVEL 3

ID 6

COVERAGE_NAME OBS

DESCRIPTION Obstacles

LEVEL 3

75

MIL-STD-2407

5.3.5.4 Tile reference coverage. A library may contain

tiled partitions and will require a tile reference coverage,
TILEREF, with associated area feature and attribute tables. Thus,
if the tile reference coverage does not exist in a library, then
no tiling scheme exists. The tile reference coverage consists of
a set of faces identifying the tiles that the library uses to
subdivide the region of interest. Tile attributes are used to
optimize retrievals. At the library level, the tile geometry is
simple, describing the location of the tile boundaries.

5.3.5.4.1 Tile attributes. The tile attributes are located
in the area feature table of the tile reference coverage. This
table maintains a unique id and its associated tile directory
name. This directory name may contain a nested directory list or
path name, relative to the coverage level. If a path name is
required, the separator character will be a backslash ('\').
Additional columns may exist for every feature class or coverage
located in the library, but this is optional. The id of the area
feature table will be used in the tile and primitive id for each
coverage feature table (see section 5.3.3.1).

TABLE 40 defines the tile reference coverage attribute columns.

TABLE 41 is an example of a tile reference coverage area feature
table.

TABLE 40. Tile reference area feature table definition.

Column Name Description Column Type Key Type Op/Man
ID Row id 1 P M
TILE_NAME Tile name T.n (n<=64) U M
FAC_ID Face id S/I/K : N M

TABLE 41. Tile area feature record example.

Column Name Contents
ID 1
TILE_NAME M\J\12
FAC_ID)

ID 2
TILE_ NAME M\J\22
FAC_ID 7
ID 3
TILE_NAME M\J\23
FAC_ID 2
ID 4
TILE_N2ME M\J\24
FAC_ID 3

76

MIL-STD-2407

5.3.5.5 Registration point table. The registration point
table includes columns for the latitude, longitude and elevation
of ground points selected as registration points. This table also
includes columns for the corresponding X, y and z table
coordinates. Each registration point in this table is identified
by a row id and a registration point id. The geographic reference
table contains an optional column containing the registration
point table name, which carries the file extension .rpt. (See
TABLE 42.)

TABLE 42. Registration point table.

Column Narme Descnghon of Contents Held Type Key lype Upivian
D Row id | P M
FEG PT. D Registration point id | N M
REG_LONG Longitude of registration point F N -M
REG_LAT Latitude of registration point F N M
G Z Elevation of registration point F N M
REG_tabie_X X table coordinate of control pts F N M
REG tbie Y Y table coordinate of control pts F N M
REG table Z Z table coordinate of control pts F N M

5.3.5.6 Diagnostic point table. The diagnostic point table
includes columns for the latitude, longitude and elevation of
ground points selected as diagnostic points. This table also
includes columns for the corresponding x, y and z table
coordinates. Each diagnostic point in this table is identified by
a row id and a diagnostic point id. The geographic reference
table contains an optional column containing the diagnostic point
table name, which carries the file extension .dpt. (See TABLE
43.)

TABLE 43. Diagnostic point table.

Column Name Descripbon of Contents Feld Type Rey Type Opien
D Row id { P M
DAG PT_D Diagnostic point id | N M
DIAG LONG Longitude of diagnostic point F N M
DIAG LAT | Latitude of diagnostic point F N M
DG Z Blevation of diagnostic point F N M
DIAG_tahig X table coordinate of diagnostic pts F N M
DIAG_table) Y table coordinate of diagnostic pts F N M
DIAG table 7 Z table coordinate of diagnostic pts F N M

77

MIL-STD-2407

5.3.6 Database. Information that applies to the whole
collection of data belongs at the database level. Structurally, a
database consists of a set of libraries. It is possible to
include a data quality table.

There are two mandatory tables: the library attribute table and
the database header table. These two tables are described below.
Multiple records in each table are used to describe multiple
sources, updates, and maintenance issues.

5.3.6.1 Librarv attribute table. The library attribute
table contains the name and extent for each library in the
database. The library minimum bounding rectangle shall be in
latitude and longitude (decimal degrees). TABLE 44 defines
library attribute entities. TABLE 45 is an example of a library
attribute table.

TABLE 44. i] 1 nti inition
Column Name Description Column Type Key Type Op/Man
ID Row id I U M
LIBRARY_NAME Library name T/L/M/N, 8 P M
XMIN Westernmost Longitude F/R N M
YMIN Southernmost Latitude F/R N M
XMAX Easternmost Longitude F/R N M
YMAX Northernmost Latitude F/R N M

TABLE 45. Librarv attribute table example.

Column Name Contents
ID 1
LIBRARY_NAME NOAMER
XMIN -97.750000
YMIN 31.167000
XMAX -97.667000
YMAX 31.250000

78

MIL-STD-2407

5.3.6.2 Database header table. The database header table
(TABLE 46) contains information that defines database content and

security information.

TABLE 46. Database header table defipition.
Column Name Descrpbon of Contents Column Type Key Type Opvan

D Rowid { P M
VPF_VERSION VPF version nurmber T10 N M
DATABASE. NAME Directory nama of the database T8 N M
DATABASE_DESC Text description of the database T,100 N M
MEDIA_STANDARD Media standard used for the database T20 N M
ORGNATOR Text for title and address of T50 N M

originator (a backslash "\"is

used as a line separator)
ADARESSEE Text for tile and address of T, 100 N M

addressee (a backslash *\" is used

as a line separator)
MEDIA_ VOLLMES Number of media volumes comprising T N M

the database
SEQ NMVBERS Sequential n s) for each media T N M

volume in thswm;se
NUM _DATA SETS Nurmber of ibraries within database T N M
SECURTY_CLASS S(‘::t:_.rily classfication cﬁsds?abase T N M

ighest sec ication

of the transmittal nu%ludng al

datasets within the database)

T=TOP SECRET

SE('RET
=CONFIDENTIAL
= R OFHOAL USE o
"FOR OFRACIAL USE ONLY')
_ U=UNCLASSIFIED

DOVWGRADING Originator's permission for T3 N M

downgrading required (yes or no)
DOWNGRADE_DATE Date of downgrading D N M
RELEASABLITY Releasabiity restrictions T2 N M
OTHER STD NAVE Free taxt, note of other standards T80 N (o]

compatible with this database
OTHER STD_DATE Publication date of other standard D N o]
OTHER_STD_VER Other standard amendment nurmber T10 N (o}
TRANSMITTAL_D Unique id for this database T N M
EDITION_NUVEER Edition number for this database T10 N M
EDITON DATE Creation date of this database D N M

79

MIL-STD-2407

5.3.7 Data gualitvy. The data quality table may be stored at
the database, library, or coverage level. It contains information
on the completeness, consistency, date status, attribute accuracy,
positional accuracy, and other miscellaneous quality information.
It also contains information about the source from which the
geographic data was derived. Lineage information should be
included in the associated narrative table, named *LINEAGE.DOC.*
While the contents and location of a data quality table within a
VPF database are product specific, it is highly recommended that
at least one table exist at the library level. TABLE 47 defines
the contents of the data quality table. APPENDIX E contains more
information about storing data quality information in VPF.

80

MIL-STD-2407

TABLE 47. Data gualitv table definition.

Colrmn Narme Description of Cortents Column Type Key Type Oo'Ven

D How id | [M

VPF_LEVEL Ether DATABASE or LIBRARY or T8 N M
OOVERAGE _

VPF_LEVEL,_NAME Directory name of database or T8 N- M
tbrary or coverage

FEATURE_OOMPLETE Feature complateness percert T N M

ATTRB_COMPLETE Attrbuts complateness percent T N M

LOGICAL,_CONSIST Logical consistency T N M

EDITION.NM Edition number T8 N M

CREATION_DATE Date of creation D N M

REVISION_DATE Date of revision D N M

SPEC_NAVE Name of product specification T N M
{e.g DCW)

SPEC_DATE Date of product specification D N M

EARUEST_SOURCE Date of earliest source D N M

LATEST_SOURCE Dats of latest source D N M

QUANT_ATT_ACC Standard deviation of T N O
quantitative attrbutes

QUAL_ATT_ACC Percert reliability of T N o)
qualtative atiributes

COLLECTION_SPEC Name of collection specification T N M

SOURCE_FLE_NAME Name of included source file T2 N o]

ABS HORZ AOC Absolute horizontal accuracy of T N M
database or fbrary or coverage

ABS HORZ UNITS Unit of measure for absolute T N M
horizontal accuracy

ABS_VERT_ACC Absolute vertical accuracy of T N M
database or ibrary or coverage

ABS_VERT_UNITS Unit of measure for absokse T2 N M
vertical accuracy

RE_HORZ ACC Point to point horizontal T N M
accuracy of database or ibrary
or coverage

REL_HORZ_UNTS Unk of measure for poirt to T20 N M
point horizontal accuracy

RE_VERT_ACC Point to point vertical accuracy T° N M
of database or ibrary or coverage

AEL_VERT_UNITS Unk of measure for point to T2 N M
point vertical accuracy

COMMENTS Miscellaneous comments - free text T° N M

Multiple records in each table are used to describe multiple

sources, updates,

5.3.8 Narrative table. The narrative table (TABLE 48) will

and maintenance issues.

contain any descriptive information concerning its associated

table. The contents of the TEXT column will be product specific.

MIL-STD-2407

TABLE 48. Narrative table definition.

Column Name Description Column Type Key Type Op /Man
Ip Row id I P M
TEXT Text information T/L/M/N, * N M

5.3.9 Namga_xgiﬁigngg_sgxsxagg- The names reference

coverage is optiocnal at the library level. The names reference
coverage must maintain the same bounding rectangle as the other
library coverages (tile and library reference coverages). Other
feature classes may exist, but are not required.

The names reference coverage will contain at least the following:
a point feature table; an entity node primitive table; and a
thematic index created on a fixed-length text column in the point
feature table. The column's name will be "PLACE_NAME."* -

5.4 VPF encapsulation. Encapsulation defines the structure
of data fields and the grouping of these fields. A simple table-
oriented data encapsulation system is defined for VPF which allows
the use of binary coded numeric data as well as text data and
which uses references to identify the location of data elements
within numerous related tables stored in files.

5.4.1 Table definition. A VPF table consists of a header
and at least one record. Records can be of variable length;
indexes can be used to directly access the files as needed. A
table will begin with a header defining the table contents,
followed by a series of records (rows). Where table records are
not of fixed length, an external index containing record offsets
and length (in bytes) will be used to provide direct access (see
FIGURE 19).

82

MIL-STD-2407

A -
eng
bt o 8 A0 ST O N

2o Entries
v S TR A N ¥ §)
| Number_bytes,Description,Narrative_file E
:] Field_Name, Type,Length,Key_Type,Desc,Value_Table K Header Length
- § Fleld_Name, Type, Length, Key_Type,Desc,Value_Table - T7T
-] Fleld_Name, Type, Length, Key_Type,Desc,Value_Table E !
’ : ~ [Offset Length
- T 172 L)
\ 206 60
1,,,5%&?5%,&1-3': _ 266 20
{ Record 286 20 F
= u-ood Record ggg gg :
- { Record AT) 400 10 |
e B |
.-{ Record 1 . 530 34
Record L 564 25
= % 5
ecor 669 20
Record 689 34
Record
Record
Record
Record
Record
Record

FIGURE 19. Table structure.

5.4.1.1 Header. 2 table's header (described in TABLE 49) is
composed of two parts. The first part is a 4-byte integer that
indicates the length of the following text string, which defines
the table. To accommodate different hardware architecture, after
the length field a byte order field may be inserted. A value of
L in the byte order field indicates a least-significant-byte-
first encoding; an "M" indicates a most-significant-byte-first
encoding. Least-significant-byte-first encoding is assumed if the
byte order field is not present.

The second part, the header definition text string, contains three

components, each of which is separated by a semicolon. The
semicolon (;) indicates the end of the component.

83

MIL-STD-2407

TABLE 49. Header field definitions.

rield Description Column Type

Header length Length of ASCII header string |I
(i.e., the remaining
information after this field)

Byte order Byte order in which table is T,1
written:
L - least-significant-first
M - most-significant-first

(semicolon separator) T,1
Table description Text description of T/L/M/N,n
the table's contents (ns80)
{semicolon separator) T,1
Narrative table An optional narrative file T/L/M/N,n
which contains miscellaneous {n<12)
information about the table
(semicolon separator) T,1
Column definitions The following fields repeat

for each column contained
in the table:

Name Name of the column T/L/M/N,n
(n<le6)
(equal sign separator) T.1
Data type One of the field types . T,1
found in table 56
(comma separator) T, 1
Numberl Number of elements T,n (n<3)
(comma separator) 7,1
Key type Key type T,1
(comma separator) T,1
Column Text description of the T/L/M/N,
description column's meaning
(comma separator) T,1
Value Name of an associated T/L/M/N,n
description value description table {(ns12)
table name (comma separator) T,1
Thematic index Name of thematic indexes. T/L/M/N,n
{(n<12)
(comma separator) T,1
Narrative table Name of an associated T/L/M/N,n
narrative
name table (n<12)
(comma separator) T,1
End of column (colon separator) T,1
... (repeat for each column)
End of header (semicolon separator) T,1
Note 1. This field contains the number of occurrences of

the data type specified, not the number of bytes. For example, if
there is only one integer value in the field, the header will

84

MIL-STD-2407

contain the number *1* in that field. For text fields only, the
value indicates the maximum of bytes allowed for that column. For
example, if a maximum of 12 characters are allowed in the field,
then the number of elements is specified as *12*. The number of
bytes specified for a particular text field are shown in
subsequent tables in this specification.

The first component is the table description. The second
component is a file reference to a narrative text, if available.
If no narrative file exists, the dash symbol (-) is used for the
file reference. The final component is the column definition
substring. The column definitions are separated by colons (:),
which indicate the end of the subcolumn definition. If an entry
is not applicable to the field (i.e., a thematic index does not
exist), the dash symbol (-) is used to indicate a null value.
Trailing null field entries need not be included. For clarity in
documentation, these trailing null fields should be listed,
however. For each column in the table, there will be:

a. Column name, followed by an equal sign (=)

b. Data type indicator, followed by a comma (,)

Number of data type elements, followed by a comma
Key type indicator, followed by a comma

. Column description, followed by a comma

Value description table name, if any, followed by a

O Q0N

comma
Thematic index name, if any, followed by a comma
. Column narrative file name, if any, followed by a comma

o>a

The character used as a separator for a particular field will not
appear in that field except as a separator. For example, the
Table Description header field will never include an imbedded
semi-colon because a semi-colon is the specified separator.
However, this field may legally contain imbedded colons or commas
because neither of these characters are the separator for Table
Description.

TABLE 50 displays an example of a text header for an area feature
table. For presentation purposes, each component in the table
definition string is listed on a separate line in TABLE 51. No
new line, space, or tab character should be inserted after the
field and component separators in the actual table definition
string. Furthermore, the example does not show the 4-byte
definition string length and the byte order character.

TABLE 50 shows a header definition string for a Surface Drainage
Area area feature table. A narrative file, SDR.DOC, is attached
to this table in the VPF database. The table has 13 columns, with
the column ID being the primary key column.

85

MIL-STD-2407

TABLE 50. Text header example.

Surface Drainage Area;
SDR.DOC;

ID=I,P,Row ID,-,~-,-,:
F_CODE=T,5,N,FACS Code,CHAR.VDT,F_CODE.ATI,F_CODE.DOC, :
RGC=1,1,N,Railroad Gauge Category, INT.VDT, -, -, :
HYC=1,1,N,Hydrographic Category, INT.VDT,-,-,:
HFC=1,1,N,Hydrographic Form Category, INT.VDT,-, -, :
EXS=1,1,N,Existence Category, INT.VDT,-,-,:
WID=F,1,N,Width (meters),-,-,-,:

WV1l=1,1,N,Water Velocity Average (m/sec),INT. —e =t
WDA=I,1,N,Water Depth Average (meters), INT.VDT,-

.~

[
-,
e

MCP=I,1,N,Material Composition Primary, INT.VDT, -,
DVR=1,1,N,Dense Bank Vegetation Right, INT.VDT,-, -, :
DVL=1,1,N,Dense Bank Vegetation Left, INT.VDT,-,-,:
BGR=1,1,N,Bank Gradient (Slope) Category Right Bank (%),-,-,-,:;

5.4.1.2 Record list. The body of data contained within the
table is the record list; the header and the table index serve
only to define the contents and provide effective access to this
list. These records can be of fixed or variable length, as
needed.

5.4.1.3 YVariable-lenath index file. The variable-length
index is a separate file that is mandatory when a VPF table
contains variable-length records. As shown in TABLE 51, the file
has two parts: a header and a data array. Each entry in the data
array relates to a record in the VPF table.

TABLE 51. Components of variable-length index file.

Pile Content of Data Field
Component Component Tvpe Length
Header Number of entries (N) Integer 4 bytes

in index (which also
matches the number of
records in the
associated table)

Number of bytes in Integer 4 bytes
VPF table header
Data array A two-dimensional Integer 8N bytes

array of N records

The data array identifies the location of every record in the
variable-length file by containing the following entries for each
record:

MIL-STD-2407

(n] {0] Byte offset from beginning of file

(n] (1]

where n is an integer from 1 to N. The term byte offset refers to
a location with respect to the beginning of a file. The first
byte of a file has an offset of zero.

Number of bytes in table record

Thus, if the software requires the location of record 45 in a VPF
table, the index file can be used to locate the exact position of
the record without sequentially searching for the match. The
entry for record 45 in the variable-length index would indicate
the byte offset in the VPF table to the position of record 45 and
the number of bytes in record 45.

5.4.2 Spatial index files. For each primitive (face, edge,

entity node, connected node, and text), there can exist a spatial
index file that will accelerate queries by software. Although
these files are optional, they are recommended, especially for
large libraries. These indexes are indirectly created on the
coordinate column or the minimum bounding rectangle of each
primitive; appendix F contains more information.

The format of the spatial index is as follows:

a. Header record. The header will contain one integer
defining the number of primitives (NUMPRIM) and another integer
defining the number of nodes (NNODE) in the index. Between the
two integer fields are four (xmin, ymin, xmax, ymax) short
floating point coordinates defining the minimum bounding
rectangle. TABLE 52 shows the layout for the spatial index file
header record.

TABLE 52. gSpatial index file header record lavout,

Byte Offset width Type Description
0 4 Integer Number of primitives
4 4 Floating point MBR x1
8 4 Floating point MER yl
12 4 Floating point MBR x2
16 4 Floating point MBR y2
20 4 Integer Number of nodes in tree

b. Bin array record. This record is a two-dimensional
array the length of which is NNODE, described in the header
record. The structure of this record is shown in TABLE 53. This
array maintains a long integer offset that points to the beginning
of the bin data record and a long integer primitive count for each
bin. The offset for the first bin always has a value of zero.

87

MIL-STD-2407

For bins that contain no primitives, the value assigned to the
count variable is zero and the offset value is zero.

TABLE 53. Structure of the bin arrav record.

Byts Offset width Tvpe Description
HDR + n * 8 4 Integer Of fset of primitive list
’ for node n
HDR + n * 8 + 4 4 Integer Count in integer units
Note: n is (0 ... number of nodes-1}; the n value for the first node

is 0. HDR is the length of the index file header record.

c. Bin data record. There are NUMPRIM records where each
record contains four 1l-byte integers defining the MBR for the
primitive and one long integer (4 bytes) for the primitive id.
These primitive ids point into the associated primitive table.
TABLE 54 shows the structure of the bin data record.

TABLE 54. Structure of the bin data record.

Byte Offset width TYype Description
HDR+BIN+OS + ¢ * 8 + 0 1 byte MBR x1
HDR+BIN+40OS + ¢ * 8 + 1 1 byte MER y1
HDR+BIN+OS + ¢ * 8 + 2 1 byte MBR x2
HDR+BIN+OS + ¢ * 8 + 3 1 byte MBR v2
HDR+BIN+OS + ¢ * B + 4 4 int Primitive id
Note: c is {0 ... number of primitives for a node - 1};

the c value for the first primitive is 0. HDR is the
length of the index file header record. BIN is the
summed length of all the bin array records. OS is the
value of the offset variable in the corresponding bin
array record (as shown in the byte offset calculation in
TABLE 53).

5.4.3 Thematic index files. A thematic index may be created
for any column in a table. There are two types of indexes,
depending on the data content in a column: an inverted list
thematic index or a bit array thematic index.

For categorical data or data with few distinct values, such as
soil polygons where numerous polygons are assigned soil class
designations from a relatively small number of classes, an
inverted list is used. One entry in the index file is created for
each distinct value in the column; correspondingly, a list of

88

MIL-STD-2407

table record ids is stored with the value.

If the data in a column is all unique, especially in the case of
an index for character strings, a bit array can be stored for each
unique byte/character in the column. Each bit in the bit array
represents a row in the indexed table. An ‘ON’ bit at a
particular position means that the corresponding row in the table
contains a specific byte/character pattern.

The character string form of the thematic index is used for names
placement index implementations.

The thematic index file may be partitioned into three data groups:
a fixed-length header, a variable number of index (or directory)
entries (another index within an index), and a set of rows. Each
row contains VPF record ids stored either as a list or as a bit
array. Each directory entry describes the element being indexed
and the location of the row containing the list (or set) of record
ids related to the element. -

a. Header. The thematic index header contains 60 bytes of
information that pertain to the type of index it is, the table it
is associated with, and the column in that table. The layout of
the header record is shown in TABLE 55. 2n optional ordering of
the entries in the index directory can be specified using the
ordering flag at offset 56 in the index header. An "S* in the
ordering flag indicates an ascending sort order in the index
directory. Entries in the directory are assumed not to have any
specific ordering otherwise.

b. 1Index directory. The index directory contains
repeating records for each distinct element being indexed. The
structure of an index directory record is shown in TABLE 56. The
number of entries is stored in the header record. Entries in the
index directory give an offset at which the actual data are
stored. There is also a count indicating the number of items
maintained for a particular index value. If the count field in an
index directory entry has a value of zero, the offset field
contains the actual data; otherwise, the offset field contains an
indirect address for the indexed data.

89

TABLE 55.

MIL-STD-2407

T ¢ ipdex file head i] _

Byte
Offset

Width

Type

Description

12

13

14

18

19

31

56

57

4

12

25

integer

Integer

integer

Character

Character

Iinteger

Character

Character

Character

Character

Character

Combined length of the index file header and the
index directory.

Number of directory entries. This is the number of
items being indexed by a particular index file.

Number of rows in the data table from which this
index file was derived.

Type of index file; either *I* for inverted list index,
or "B for bit array index.

Type of the data element being indexed; one of:
I—4-byte integer

T—character string -
*S"—2-byle integer

*F"—4-byte floating point

R—8-byte floating point

Number of data elements comprising one directory
entry. This field will usually have a value of 1; an
exception is a thematic index built on a text field.

Type specifier for the data portion of an index file.
Record ids in inverted list index can be stored by
using either a 2-byte integer (type "S*) or a 4-byte
one (type "I"). Bit array index files always use
type *S."

The name of the VPF table from which the index
file has been derived; no path information is
inciuded.

The name of the column in the VPF table from
which index entries have been pulled.

Ordering flag ("S" indicates an ascending order in
the index directiory; no specific sort order
otherwise).

Unused and reserved.

90

MIL-STD-2407

TABLE 56. Structure of index directorvy record.

Byte Offset widath Type Description

HDR +n*(d+8) da Character string The element being indexed.
2-byte integer
d-byte integer
4-byte floating point
8-byte floating point

HDR +n*(d+8)+d 4 Integer The offset from the
beginning of the file to
the location of the row
associated with this index
entry.

HDR +n*(d+8)+d+4 4 Integer The number of indexed
records associated with
this entry. (For bit
array index files, this is
the number of bytes.)

Note: n is {0 ... number of index entries-1), and d = size of (indexed
type). HDR is the length of the index file header record.

c. Index data. For each index entry there exists a data
record consisting of either a list of row ids from the indexed
file or a bit array.

The following example shows an inverted list thematic index
created on a feature table column of data type ‘'S' (short
integer). The name of the column is USE_CODE. The name of the
table is CULAREA.AFT. The index table header shown in TABLE 57 is
thus,

TABLE 57. Thematic index header example.

Byte
Offset width Tvpe value
0 4 Integer 90 (header length + index directory
length)
4 4 Integer 3 (number of directory entries)
8 4 Integer 293 (number of indexed rows)
12 1 Character I {inverted list)
13 1l Character s (short integer source data)
14 4 Integer 1 (data length is 1)
18 1 Character s {short integer indexed id)
19 12 Character CULAREA.AFT
31 25 Character USE_CODE
56 1 Character s (sorted index directory)
57 3 Character . -

91

MIL-STD-2407

The value at byte offset 60 is the value of the element being
indexed. The number of rows from the table CULAREA.AFT is
contained at address HDR+n*(d+8)+d+4 (in this case at byte offset
66). The first entry in the directory has a USE_CODE value of 2,
and there are 5 rows that contain the value. The CULAREA.AFT rows
can be found at address 90. Another index directory entry starts
at offset 70. This entry has a count of zero, indicating that the
offset field contains the row number for the CULAREA.AFT table.
The index directory shown in TABLE 58 is thus,

TABLE 58. JThematic index directory example.

Byte Offset width Type Value
60 2 Short Integer 2 (index value)
62 4 Integer S0 (offset)
66 4 Integer 5 (count)
70 2 Short Integer 3
72 4 Integer 20 (direct row id)
76 4 Integer 0 (count of ®"zero")
80 2 Short Integer 4
82 4 Integer 100
86 4 Integer 4

The index data shown in TABLE 59 are thus,

TABLE 59. Thematic index data example.

Byte Offset Count Row numbers
S0 S 8 9 10 11 12
100 4 22 23 24 25

$.4.3.1 Feature index. Feature indices may be created for
any VPF coverage. These are join indices that have been developed
to enhance processing of complex queries in relational databases.
This is particularly significant in tiled VPF coverages with a
number of feature classes. The VPF Standard specifies a set of
join indices for feature/primitive joins. One feature join index
can be defined for each of the five primitive types in a coverage.
For example, an edge feature join index, edg.fit, can be defined
for edge primitives and the corresponding line and complex
features that reference those primitives.

Feature join indices are optional. Feature indices are composed
of: (a) a feature class attribute table (FCA) and (b) a number of
feature index tables (FIT). Feature index tables allow quick
retrieval of feature information when given a selected primitive.
They bypass the normal relational operations usually required and
prestore the results of feature-to-primitive and primitive-to-
feature relations. As indices, they may be deleted at any time
and the relationships between tables will be maintained provided

92

MIL-STD-2407

the associated join tables have been defined. Any updates to the
data will cause the indices to be rebuilt. The feature index
tables may not be referenced in the FCS. There could be one FIT
for each primitive type in a coverage. For a given coverage, if a
feature index is defined for a primitive type, all feature classes
associated with that primitive type must be indexed. Aall FCA and
FIT's reside at the coverage level.

A VPF coverage can optionally contain a Feature Class Attribute
table (FCaA). This table should minimally have the following
columns: a feature class ID column (ID), a feature class name
column (FCLASS), the feature type (TYPE) and a feature class
description column (DESCR). A feature class attribute table
definition example is shown in TABLE 60.

TABLE 60. [Feature class attribute table definition.

Column Name Description Fleld Key Type Op/Man
Type

1D Row ID 1 P M

FCLASS Feature class name T/L/M/N, 8 u M

TYPE Feature type (P-point, T,1 N M

L-line, A-area, T-text,
C-complex)
DESCR Description T/L/M/N,* N M

Every primitive/feature reference, both directly and indirectly,
as in the case of complex features, results in one entry in the
appropriate FIT for that primitive and the corresponding feature.
If a feature is composed of multiple primitives, each of those
feature/primitive relationships is recorded. Conversely, if a
primitive is applicable for more than one feature, multiple
relationships are similarly maintained. When a primitive is
referenced by a complex feature via an intermediate feature, the
relationship between the primitive and the complex feature, as
well as that between the primitive and the intermediate feature,
are recorded in the FIT's.

Feature Index Tables (FIT) are made up of two compound keys, the
feature class id (FC_ID) and the feature id (FEATURE_ID) to
properly identify an individual geographic feature, and the tile
id (TILE_ID) and primitive id (PRIM_ID) for a primitive.
Available FIT names are: EDG.FIT, CND.FIT, END.FIT, FAC.FIT and
TXT.FIT. An example of a feature index table definition is shown
in TABLE 61.

93

MIL-STD-2407

TABLE 61. Feature index table definition.

Column Name Description Field Key Type Op/Man
TYpe

ID Row ID I P M

PRIM_ID Primitive id (foreign 1 N M
key to primitive table)

TILE_ID Tile reference id s N MT

FC_ID Feature class id 1 N M
(foreign key to FCA)

FEATURE_ID Feature id (foreign key I N M

to feature table)

5.4.4 allowable field tvpes.

The field types depicted in TABLE

62 are allowed and provide the ability to encode any data set.

all variable-length types include a count item *n*
TABLE 56) preceding the data.

(as depicted in
The count is a 4-byte integer.

This count item contains the number of bytes in text strings and
the number of tuples in coordinate strings.

94

MIL-STD-2407

TABLE 62.
Length
Abbrv Column Type Null/No Value (bytes)
T.n Fixed-length text *N/A* n
T,* Variable-length text Zero length n + 4
L,n Level 1 (Latin 1 - ISO *N/A* n
8859) Fixed-length text
L* Level 1 (Latin 1 - ISO zero length n+4
8859) Variable-length
text
N,n Level 2 (Full Latin - *N/A* n
IS0 6937) Fixed-length
text
N* Level 2 (Full Latin - zero length n+4
ISO 6937 Variable~-length
text
M,n Level 3 (Multilingual - | *N/A* n
ISO 10646) Fixed-length
text
M* Level 3 (Multilingual - | zero length n+4 3
ISO 10646) Variable-
length text
F Short floating point NaN (not a number) 4
R Long floating point NaN 8
S Short integer bit pattern 10000000 2
00000000
I Long integer bit pattern 10000000 4
00000000 00000000
00000000
c,n 2-coordinate array, Both coordinates 8n
short floating point equal to null
c,* 2-coordinate string Length = 0 8n + 4
B.,n 2-coordinate array, Both coordinates 16n
long floating point egual to null
B,* 2-coordinate string Length = 0 l6n + 4
Z,n 3-coordinate array, All three coordinates 12n
short floating point equal to null
Z,* 3-coordinate string Length = 0 12n + 4
Y.n 3-coordinate array, All three coordinates 24n
long floating point equal to null
Y, * 3-coordinate string Length = 0 24n + 4
D Date and time Space character filled] 20
X Null field - -
K Triplet id Type byte = 0 1-13

NOTE: For data types Y and Z, if the elevation (2) field is not

populated due to source restrictions, it will be filled with the

appropriate NULL value.

5$.4.5 Naming conventions. The following define the naming
conventions for VPF file and column names. (All examples shown in

this document are in capital letters.) (See also the VPF reserved
names in TABLEs 13, 14, and 15.)

a. All naming will use ISO 646 (ASCII) characters.

95

MIL-STD-2407

b. All file names and all references to file names shall
be lowercase. This includes file references within table headers,
attribute values, and indices. All references to database,
library, coverage, and feature class names shall be in lowercase
where they occur. For example, feature class names in FCS and FCA
tables will be lowercase. For file names, the first character
must be an alpha character from a to z. The remaining 7
characters can be alphanumeric, including the underscore ('_')
character.

A file name may have a trailing period with a 3-character
suffix. The suffix may contain only characters from a to z,
except that x is not allowed.

Any table with variable-length records will maintain a
variable-length index file with the same file name as its
associated table except that the last character will be x (with
one exception; see paragraph 5.3.1.2). -

c. All names are to be in lowercase.

d. Directory names (names for libraries, databases, and
coverages) are restricted to the same rules as for file names,
except that there will be no suffix.

e. Column names follow the same restrictions as file
names, but they can be 16 characters in length. The dollar sign
('$*), pound sign ('#'), dash ('-*'), period ('.'), and slash ('/')
are allowable characters.

The column name ("ID*) is reserved and must be used to
identify each table record.

f. 1f a column is defined with a triplet id, the fields
within the triplet id will be named as:

Field one ID The internal tile primitive id
Field two TILE_ID The tile reference id
Field three EXT_ID The external tile primitive id

The (\) will be used as a separator between the column name and
the triplet id field. Thus, when referring to the internal
primitive id within a triplet id column (LEFT_FACE) the column
name will be named *LEFT_FACE\ID".

5.4.6 Triplet id field tvpe. As discussed in cross-tile
keys (section‘5.2.2.3.4), a triplet id can be used to reference
primitives from multiple tiles in a tiled coverage. This field

96

MIL-STD-2407

type replaces the integer foreign key used in untiled coverages.
The first component of a triplet is an 8-bit type byte. The type
byte is broken down into four 2-bit pieces; each of these 2-bit
pieces describes the length of a succeeding field. TABLE 63 lists
the possible values for these 2-bit field descriptors. Only the
first three fields are currently being used. The fourth field is
reserved. FIGURE 20 is an example of the triplet id field.

TABLE 63. Type byte definitions.

Bit Count Number Bits in Pield
0 0
1 8
2 16
3 32
T —— — ——————
Type | Resulting
Byte | id

[Lo00] ? [|

{8-bit row id
3000§] | 1 I]
: 32-bit row id
[0230] (]I | |
16-bit tile id
|] | i |

32-bit row id

BZ230] |{] | I | |

. 32-bit row id (current tile)
1 |]
5 16-bit tile id
I 11 m | |]
] 32-bit row id (next tile)

FIGURE 20. Examples of the triplet id.

The first field (referred to as ID) generally is used to store a
primitive id without a tile id predicate. The tile reference id,
the second field (TILE_ID), and the external primitive id, the

97

MIL-STD-2407

third field (EXT_ID), together store an augmented primitive id for
cross-tile topology.

5.5 Data svntax reguirements. VPF requires the use of

numeric, textual, coordinate, and date syntax items. These items
comprise the lowest level of the VPF design. In order to utilize
these items, a number of basic data types are required. These are
integer or real numbers, strings of text, and coordinate data
types. The coding of these data types is defined in terms of a
number of international standards. VPF products may have a byte
order specified in the product specification and the table header.
Five categories of data syntax items are required in VPF. These
are integer numbers, real numbers, text strings, coordinates, and
date.

5.5.1 Integer numbers. The two fixed-length integer data
fields are 16 bits and 32 bits; hereafter they are termed *short"
and *long" precision, respectively. Integers are binary encoded
using the 2's complement scheme. For integer number formats, the
null value consists of the sign bit set to one and all trailing
bits set to zero. Different length integer numbers may be
required in different situations. For example, the number 32,000
can be handled in 2 bytes of data, whereas the number
2,147,483,647 will fill 4 bytes of data. The general structure
and several examples of the integer number format can be found in
FIGURE 21.

b8 b7 b6 b5 b4 b3 b2 bl bS8 b7 b6 b5 b4 b3 b2 bl = bits
*hs, el oy s - Dyte
. LSB = Least
Integer Number Format Structure Significant
Bit
b8 b7 b6 b5 b4 b3 b2 bl fg‘?g ",f’,‘OStt
a
12 =|0[0,0,0,1,1,0,0 P
b8 b7 b6 bS5 b4 b3 b2 bl
-7 41 1.1|1|11010.1
b8 b7 b6 b5 bd b3 b2 bl b8 b7 b6 b5 bd b3 b2 bl
s140 «0{0,0,2,0,1,0,040,0,0;1,0,1,0;0

Integer Examples

FIGURE 21. Integer number syntax.

5.5.2 Real numbers. Real numbers are needed to carry

98

MIL-STD-2407

parametric information. VPF uses the IEEE floating-point real
number format (ANSI/IEEE 754) in both 32-bit (short) and 64-bit
(long) form. Numbers in the single and double formats are
composed of the following three fields:

s 1-bit field for sign

e Biased exponent field (equals exponent E
plus bias)

f Fraction field (mantissa)

a. Range. The range of the unbiased exponent includes
every integer value between Enin and Emax, inclusive, and also two
other reserved values, Emin - 1 and Emax + 1, to encode certain

special states as described below. Figure 22 illustrates real
number syntax.

b. 32-bit format. For a 32-bit single format number, the
value v is inferred from its constituents thus:

(1) If e = 255 and £ # 0, then v is NaN,
(2) If e = 255 and f = 0, then v = (-1)S oo,
(3) If 0 < e < 255, then v = (-1)S 2€ -127 (1 , £,

(4) If e=0and £# 0, then v = (-1)S 2€ -127 (0 , f)

(denormalized numbers),

(5) If e = 0 and f = 0, then v
{zexro).

(-1)S 0

c. 64-bit format. For a 64-bit double format number the
value v is inferred from its constituents, thus:

(1) If e = 2047 and f # 0, then v is NaN,
(2) If e = 2047 and f = 0, then v = (-1)S oo,
(3) If 0 < e < 2047, then v = (-1)S 2 -1023 (1 , £,

(4) If e=0and f# 0, then v = (-1)S 2 -1023 (o , £
(denormalized numbers),

(5) If e=0and f=0, thenv = (-1)S 0
(zero).

, Note: the *«® in equations (3) and (4) above corresponds to a
decimal point.

99

MIL-STD-2407

Exponent Mantissa

1' L4] <3 l
b32 b3l b23 bl

EREE I I A IO I O

!
] e b d
K \ Implicit
Sign Binary
Point

IEEE Short Real Number Format Structure (32 bit)

Exponent Mantissa
1 I T l -4]
b64 b3 bs2 b1
l;'ﬁl I R ST U TN . YN SN TN TR N U A T T O T |
s . £
& \ Implicit
Sign Binary _

Point

IEEE Long Real Number Format Structure (64 bit)

Where : e The sign bit is 0 for positive and 1 for negative.

e The exponent is 8 bits long for short real numbers and
11 bits for long real numbers. The exponent is biased by
81 hexadecimal for short real numbers and 401 for long.

» The remaining bits are the mantissa. Since the first
significant bit is known to be set (since the mantissa
is normalized), it is not stored. The length is 23 bits
for short real numbers and 52 bits for long real numbers.

FIGURE 22. Real number svntax.

5.5.3 Date and time svntax. The generalized time data type

consists of a string of international reference version (IRV)
characters where the calendar date (as specified in ISO 8601)
consists of a four-digit representation of the year, a two-digit
representation of the month, and a two-digit representation of the
day. This is followed by the time of day (as specified in ISO
8601) consisting of a string of digits containing a two-digit
representation of the hour (based on the 24-hour clock), a two-
digit representation of the minute, and a two-digit representation
of the second, followed by.a decimal point (or decimal comma) and
an arbitrary number of digits of fractions of a second. This may
be followed by the letter Z to represent coordinated Universal
Time rather than local time, or be followed by a time differential

100

MIL-STD-2407

from UT in accordance with ISO 8601 (see FIGURE 23). 1In a fixed
data field usage, date and time elements will be 20 bytes long,
Optional
EIIH Il EID DD DD DD L] '"DDDDD
Year Month tmy Hour M1n Sec. Decimal _ Hour M1n
point Zz
or Time Zone
comma Differential

Z for Universal Time
+ or - for Time Zone

Example Date / Time Elements Differential

. . « No date/time given, 20 space characters

1992 * Year is only value given, no time. Pad with space
characters.

199210 * Year/month given, no time. Pad with space-characters

* Local time 6 minutes, 27 seconds
19870205160627. after 4 pm on 5 February 1987

¢ As above but Universal Time
19870205210627.2 (Greenwich)

« Local Time as above. The
19870205160627.-0500 local time is 5 hour time
behind UTC

FIGURE 23. n im ntax.

allowing for the specification of date and time with time zone
differentials (or optionally fractional seconds). Unfilled digits
will be filled with space characters. A null date time
specification will consist of a string of space characters.

5.5.4 Text svntax. Text syntax is described in DIGEST Part
3 sections 5.1.4 - 5.2.3. Use the text syntax described for
DIGEST Annex C, Vector Relational Tables.

a. Text strings. Textual information can be either
variable length or fixed length. The null state of a variable-
length text string is of zero length. The null state of a fixed-
length text string requires that a specific code be selected. The
character string *N/A* should be used, padded if necessary. If
the length is one or two, *-* or “--* should be used instead. The
CO (control set code table) character SP (code table position 2/0

101

MIL-STD-2407

in FIGURE 24) should be used as the *"space® or *blank® character,
and as the padding character. The character code NUL (code table
position 0/0) and a number of other CO control characters may have
special meaning on some computer systems and should not appear in
any text strings. A NUL or a SUB (~Z) in a file is an end of file
mark on some computers. Two types of text strings are supported
in VPF:

1. Basic text string. These strings make use of
characters only from the IRV (ASCII) primary code table and the
subset of the CO table identified above.

2. General text strings. These strings are composed of
characters from any of the ISO registered code tables. Code
extension (ISO 2022) is only required to handle written languages
that are not based on the Latin alphabet. For languages (like
English, French, German, or Spanish) that use the Latin alphabet,
the IRV (ASCII) and the supplementary code table together w1th the
identified subset of the CO set will be used.

b. Code tables. 2all text is coded in terms of character
sets. Particular character codes are identified by a code table
arranged into rows and columns in which 94 character codes are
assigned. A number of different character code tables are in use
internationally and these code tables are registered with the
International Standards Organization under ISO 2375. The basic
international code table is the IRV alphabet (see FIGURE 24).

The alphabetic code table is termed the graphic or “G" set.
Another specialized code table, the control or *CO" set, is also
defined. Some of the CO control characters are reserved for
specialized use, such as transmission control in an asynchronous
communications system or application level delimiting. VPF
requires only the format effector CO characters, such as carriage
return (CR) and line feed (LF), and the code extension characters
escape (ESC), shift in (SI), and shift out (SO). The code
extension characters allow extension to other alphabets as
described below. Other CO characters are not used and have a null
meaning. The IRV (ASCII) code table caters largely to the needs
of the English language. For other Latin languages in which
accented letters are used extensively, the IS0 has recommended a
supplementary character set for coded characters in text
communication (ISO 6937). First, a nonspacing accent character is
selected from the supplementary character set; then the accented
character is selected.

r 4

+e=é

102

MIL-STD-2407

§b700001111
SBloelololalalololala
olps] of A of 3 o 0
row 8|1]12]3]4(5]6]7
b4Ib3[b2 b1 ——
olojojo| @ == |SPjo|@|P| " |p
olojoj1] i 1/A|Q]ajq
olo]1]jol2 2|B|{R|b|r
ofol1]1}l3 S3|C|Sjc|s
oli]olo|4 4|1D|T|d|t
oj1{ol1l5s S|EjU]jelu
oji1]1]o]| 6 6|FiU|Tlv
ol1l1]2]7 7|6|Wi{g|w
1{o|o|o| 8 8|H|H|h|R
1{o]o]1}9 gl1i¥Yiily -
1{o{1]of1@ t(d|Z2tilz
1fo{1]2|11 , KT k)
1{1]ofof12 =, F< LN]
1j1jof1)13 -1 ={M[]|m]}
1l1]1|o[14] |solE].|>IN]~|n}|~
wfaf1f1fis| sl]/ 2{0]_|o]%
FIGURE 24. in a im 1

This supplementary code table (see FIGURE 25) may be used with IRV
(ASCII) or other national variants of IRV. In addition, the
repertoire of all accented characters and diacritical marks (see
FIGURE 26) covers all Latin alphabet-based languages as
represented by ISO 6937.

For languages based on other alphabets (such as Greek, Cyrillic,
Chinese Hanzi, and Japanese Kanji or Katakana), independent code
tables may be defined. These code tables are registered with the
ISO and are assigned a final character code for use with a
designated escape sequence. By use of these escape sequences, the
current *in-use" code table may be switched.

The code table switching mechanism is specified by ISO 2022. The
in-use code space is organized into rows and columns and divided
into two areas, the ®"in-use* C area and the G area. The character
ESC (escape) (position 1/11) is used as an introducer to sequences
of codes which determine which code table is in use.

103

MIL~-STD-2407

E zJo Jo fo To 1 11 11 11
Blslofofalafolofala
olbsf o o Ao 0
row B8l1]2{314|5|6]7
ba[b3]b2]b1
olojlolo] @ 1By -10]K
ofoflola]1 i 1|
olo]1]o] 2 ¢j?| " |®|B|d
ojoj1]1]3 £l’|"|e]a|d
oj1{o]o] 4 ${x|~{™|tH]N
ol1]of1|5 ¥lul—| g
ol1]{1]o] 6 #l9|~]-|J[1J
olxl2f1]7 1 § PRI
1lolojol 8 |+ :}t{
1{ojo[1]9 1T Bxnle)
1|o]1{of10 o el E|e
1jof2]2ft11 Tl 2|0
1}1{o]ol12 =148 D[b
1|1lo|1]13 &;4%“&%?1
1|1]1{ol14 = 1+~ PB4l . B[N n
1{1f1]1}15 SBANMUEL

FIGURE 25. Latin alphabet supplementarv code table of

a. International alphabets. The following is a list of the most
common alternate alphabets from the international registry,
together with their final character for the escape sequence used
to designate.

IRV (Latin) alphabet - 4/0

UK variant of IRV - 4/1

ASCII variant of IRV - 4/2

Other set for use with variants of IRV - 6/12
Katakana alphabet (Japanese) - 4/9

Greek alphabet - 6/10

Cyrillic alphabet - 4/14

Extended Cyrillic alphabet - 5/1

African languages alphabet - 4/13

Arabic alphabet - 6/11

104

MIL-STD-2407

4 g

¥ 8

Q
1AL g £
slelgls]e ; 5
J121&8121|= < o
slelefelElals|elg]el ElE]15]E
(2] L] [e]
HHHEHEHHEBE R
an|an|an|af|ai|an A |24 3A | af 20
bB| . R
cC|¢cC eC &€ ¢C cC
dn . N . dn — [
ek | éE | ¢k | 6E | &F 13 eE | BF | & ef
{3 .
gG{ g g6]d g6 G
hH| . h A | -
)i fag]i|an i| i)
JJ)
kK| kK
Lin i L
mM| | .
AN[nN| | fiN | nN oN
00 |60{00 |60 60|60 c0 ol | 60
pP
qa|
rR|rB ¥R 8
sS | $S $S 5§ s
LU D B N B P R I N4
ul |aU | uU | aU | il |GU a0 |uU|uUu ul | il uy
vl
| Kbib]
“H rIR4 A . .e
yy|yy gv| gv gy
zZ|z2 37 ' 27

FIGURE 26. Usage of accents and diacritical marks.

b. Chinese and Japanese alphabets. The Chinese and Japanese
iconographic alphabets may also be designated. These character
sets are special in that they require two consecutive bytes to
index into over 8,000 entries. The designation sequences are
given below:

Chinese Hanzi - ESC 2/4 4/1

105

MIL-STD-2407

Japanese Kanji - ESC 2/4 4/2

5.5.5 Coordinate svpntax. A coordinate specifies a position in

the Cartesian unit coordinate space as a vectorial displacement

from the origin of the coordinate space. A coordinate parameter
value takes the form of an short or long floating point value.

5.5.6 Coordinate strings. Two types of coordinate strings are
defined for use in VPF. These consist of coordinate tuples (pairs

or triplets). All coordinate strings are constructed out of the
number and coordinate formats defined in the previous subsections.
A coordinate string consists of a sequence of coordinate parameter
values corresponding to coordinate pairs.

6. NOTES

(This section contains information of a general or explanatory nature
that may be helpful, but is not mandatory.)

6.1 JIntended use. This standard is designed to define the
methods and provide guidance for creating and using digital
geographic databases in vector product format.

6.2 Acquisition requirements. When this standard is used in
acquisition, the applicable issue of DODISS must be cited in the

solicitation (see 2.1.1 and 2.2).

6.3 Supersession. These standard supersedes Military
Standard for Vector Product Format, MIL-STD-600006, 13 April 1992.

6.4 Subject term (kev word listing).

Database

Geographic information
Georelational data
Geospatial features
Metadata

Spatial data

6.5 Changes from previous issue. Marginal notations are

not used in this revision to identify changes with respect to the
previous issue due to the extent of the changes.

106

MIL-STD-2407

APPENDIX A
INTRODUCTION TO THE VPF DATA MODEL
A.l1. GENERAL

A.1.1. Scope. This appendix provides information,
discussion, and examples concerning the VPF data model. The
information contained in this standard shall be used by the
Military Departments, Office of the Secretary of Defense,
Organizations of the Joint Chiefs of Staff and the Defense
Agencies of the Department of Defense (collectively known as DoD
Components) in preparing and accessing digital geographic data
required or specified to be in vector product format.

A.2. APPLICABLE DOCUMENTS
This section is not applicable to this appendix.

A.3. DEFINITIONS

A.3.1. Definitions used in this appendix. For purposes of

this appendix, the definitions in section 3 of the main document
shall apply.

A.4. GENERAL INFORMATION

A.4.1. Introduction. VPF is a general, user-oriented data
format for representing large spatially referenced (geographic)
databases. VPF is designed to be used directly; that is, software
can access the data without time-consuming conversion processing.
VPF is designed to be compatible with a wide variety of users,
applications, and products.

To achieve its generality and user orientation, VPF uses a
georelational data model that provides a flexible but powerful
organizational structure for any digital geographic database in
vector format. VPF defines the format of data objects, and the
georelational data model supporting VPF provides a data
organization within which software can manipulate the VPF data
objects.

The following paragraphs discuss in general the data model
that serves as the basis of VPF. Section A.4.2 discusses the
basic concepts that form the foundation for all geographic data
models. Section A.4.3 describes the relational model, while
section A.4.4 describes the planar topology model.

107

MIL-STD-2407

APPENDIX A
A.4.2. Data model concepts. A model is a fundamental

description of a system that accounts for all known properties of
that system. The system is a view of geographic reality, or
information tied to specific locations in coordinate space. Since
this particular model is stored in a computer, it is called a data
model. A data model provides the most abstract representation of
a system; it describes a collection of entities, including their
relationships and semantics. The purpose of a data model is to
define and capture a view of reality in a consistent and uniform
manner. It provides a framework to visualize the structure and
behavior of these entities in a system.

A model of a database requires three components: the
definition of the data objects, data operations, and the rules of
data integrity. These components are defined in the following
three subparagraphs. Objects identify how the user perceives the
data and its structure. The operations define how the user may
manipulate the objects. Integrity rules bind the objects and
operations, and establish a well-defined behavior that provides
accurate information in a predictable manner. The fourth sub-
paragraph deals with the purpose and functionality behind a
database.

A.4.2.1. Data obijects. Data objects identify how the user
perceives the data and its structure. These objects also define
the most primitive partitions of the data model architecture. For
instance, an international database may contain a wide variety of
objects concerning nations. The relevant objects could be areas,
civil divisions, populations, resources, products, and water
bodies. Relationships can be defined for these objects where
populations and resources are grouped by civil divisions.

A.4.2.2. Data operations. Data operations define how a user
may manipulate the objects; where, for instance, an object's
attributes may be displayed, or new attributes could be defined,
or, perhaps, new objects created. In most cases, an algebra is
defined that accurately manipulates the data objects and binds the
scope of operations within the data model. Classical database
operations include retrieval, creation, deletion, and
modification. More specific operations are defined for
applications using the database.

A.4.2.3. Data rules. The rules of data integrity constrain
the operations on objects in order to preserve overall stability.
The goal is to prevent operations that yield corrupt, incorrect,
or ambiguous results. Integrity rules constrain the set of valid
states of databases that conform to the data model. These rules
define the accuracy of the database.

108

MIL-STD-2407
APPENDIX A .

A.4.2.4. Database purpose. One function of a database is to
provide centralized control of operational data that is vital to
an organization. A data model attempts to closely mesh the data
objects, operations, and integrity rules into a cohesive system
with optimal performance. The advantages of centralized database
control are well established, and the use of a data model allows a
database to provide the following functionality to an
organization.

a. Consistency. The database will provide access to data
in a formal manner. This will establish a consistent
view of the data, enabling efficient data exchange.

b. Simplicity. A basic objective is to provide an
intuitive, straightforward, and understandable
interaction between the user and the data.

c. Nonredundancy. Duplication of data will be avoided
wherever possible, especially when repetition provides
little additional information.

d. Multiple applications. The data model needs to support
multiple end user applications because user views of
the database will be different.

e. Flexibility. A critical requirement of an effective
‘database is the ability to accept new data. A database
needs to have the dynamic flexibility to grow with the
needs and requirements of its users.

f. Integrity. The integrity rules should be defined in a
consistent manner for all data objects and operations.
The use of well-defined rules prevents operations that
lead to data corruption and misinformation.

In summary, a data model provides a powerful approcach to
achieving optimum centralized control of critical data within a
system. Using a variety of integrity rules and established
operations upon defined data objects, the database provides users
with the necessary tools for extracting data in support of many
applications.

A.4.3. Relational data model concepts. The relational data

model provides a powerful architecture for database design because
of its ability to handle a wide variety of data and applications.

A.4.3.1. Relational data obijects. The relational model uses

simple tabular data structures to portray the data in a natural,
well-defined manner. These data structures contain columns and

109

MIL-STD-2407

APPENDIX A

rows, where columns define attributes, the values for which are
taken from a range of data defined across a given domain. The
content of the rows represents the actual data entities. The
strength of the relational model is its ad hoc ability to
establish meaningful data, transforming data into information as a
function of user perspective. For instance, a relational table
"ROADS® can be defined as having three columns: name, class, and
structure. The rows that compose the ROADS table would contain
distinct information about each road in each field in the
database. The six following properties distinguish relational
tables from nonrelational data objects:

a. Entries in columns must be single-valued; a field may not
contain a list of attributes.

b. Entries within a column must be of the same data type.

c. Each row must be unique, and duplicate rows are not
permitted. -

d. Columns may appear in any order.
e. Rows may also appear in any order.

f. Each column must have a unigue name.

A.4.3.2. Relational data operations. The relational model
supports eight set operations: select, project, product, join,

union, intersection, difference, and division. Since the
relational model is founded on set theory, the operations
themselves are based on fundamental mathematical principles.
These operations allow data objects to be manipulated and created
in a specific manner, producing stable results.

A.4.3.3. Relational data rules. The integrity rules

constrain operations performed on objects in order to preserve
stability. The goal is to prevent operations that yield corrupt,
incorrect, or ambiguous results. The entity integrity rule
requires the entry of a null value in columns in relationai tables
for which the value is always known or understood. The
referential integrity rule ensures that a foreign key referenced
into another table stays within recognizable bounds. For example,
a foreign key is not permitted that references a record number of
500 in a table that only contains 300 records. Additional, more
subtle domain rules can also be defined to constrain entries in
and operations on the database.

A.4.4. Plane topoloay model concepts. Conceptually, plane

topology can be defined as a planar graph, where geographic

110

MIL-STD-2407

APPENDIX 2
reality is decomposed into a finite set of 0 cells (nodes), 1
cells (edges), and 2 cells (faces). This terminology is defined

by an algebraic topology that establishes rules for decomposing
continuous three-dimensional objects into representations of
finite models. Once this topologic mapping has been performed, a
system can be modeled in a way that permits more complex
relationships between objects to be established.

The purpose of topology is to capture and retain knowledge
concerning a cell's spatial and thematic relationships with its
neighboring cells. For a topologic model to be valid, these
relationships must remain constant regardless of changes in scale,
shape, or size. With topology embedded in a data model, very
useful relations can be established, such as adjacency and
connectivity. Topologic and geometric relationships (such as
size, angle, and shape) provide powerful resources that allow
geographic reality to be fully modeled.

A.4.1.1. TJTopologic obiects. Plane topology extends graphic
models of nodes and edges to the development of a more powerful

and expressive model that contains spatial relationships. 1In
addition to metric capabilities (distance, shape, or size),
topology determines spatial neighbor relations. By defining more
rigorous and complex relationships in the data model, the true
properties of a system can be more effectively represented.
Various mathematical models are available. In addition, simpler
models can be used to create more complex ones. The most simple
is the graphic model. More complex and useful surface-based
models are built upon the graphic, using topology to capture
additional analytical information.

A graphic model represents geometric information based on
node and edge primitives. This model provides the base for other
models that define more complex relationships. The node primitive
is composed of a location in an established coordinate space.

Most representations are two dimensional (x,y) or three
dimensional (x,y,z). An edge is composed of a minimum of two
nodes, with more details concerning linear or spline interpolation
between the end points.

Because of the complexity of geographic information and the
limitations of a graphic model, plane topology provides a better
model for defining relationships. The use of a planar topology
model (based on the two-dimensional manifold), for instance, maps
more concisely in the two-dimensional space that current computing
systems can manage. VPF provides four distinct levels of
topology: full planar topology (level 3); a linear planar graph
(level 2); a nonplanar linear graph (level 1); and no topology
defined, indicating a geometric model (level 0). VPF uses the

111

MIL-STD-2407

APPENDIX A
notion of topology as a constraint to enforce integrity rules upon
the feature definitions. As the entities require fewer
topological relationships, the rules can be relaxed. For
instance, if linear features in a transportation network are being
modeled, then the requirement of full planar topology may be
relaxed because it is not necessary.

Plane topology defines relations between cells without
modifying the underlying geometry. The concept of a cell can be
visually retained in graphic models, but only allows one view of
the data. Topology establishes a framework that provides more
information for analysis. For instance, in figure 27, the edges
1, 2, 3, 4, and 5 are grouped together into face 'a.' Another
face known as ‘b, ' including the edges 5 through 12, can be
defined. Topology defines relationships on each 0-, 1-, and 2-
cell in a model. Face 'b' is defined to be *left-of" edge 5; edge
7 can be defined to

FIGURE 27. The definition of faces.

follow edge 6 in a cycle. This topologic information
provides the power to determine orientation, adjacency, and
connective relationships between objects.

The concept of topology held by the geometric primitives is
carried upward to features and their associated thematic
information. An area feature is usually labeled, or contains
information pertaining to the enclosed region. For instance, an
area can have a category (soil class, surface material type) or a
numeric value (population size, number of airports). Topology is
used to provide operations and information to distinguish between
these thematic objects. Thematic relationships can exist between

112

MIL-STD-2407

APPENDIX A

(geometry, topology, and relational tables) provides a robust
database architecture.

VPF adheres to the georelational data model, but only defines
the objects and the data structures that compose the objects. The
georelational operations and algebra are not part of the standard,
but rather are implemented in software. Every VPF object is
described in the form of a relational table, composed of columns
defining the syntax of each field and rows that contain the actual

data.

114

MIL-STD-2407

APPENDIX A

features without requiring the primitive geometry. For instance,
a set of the islands in the Pacific Ocean (Oahu, Maui, Hawaii,
Molokai, etc.) can be defined as different features with differing
geometric primitives, but they can be related to one another as
the Hawaiian Islands.

A.4.1.2. Topological operations. Topological operations are

based on the single notion of adjacency—that is, if two objects
are next to each other, it is necessary to maintain the adjacent
relationship between them. To distinguish the topological aspects
from the geometric aspects of geography, we are only concerned
with whether two objects, A and B, are adjacent to each other and
not with whether A is bigger than B, or one is to the north of the
other, or the length of their common boundary.

Many complex topological operations can be derived from
adjacency alone. 1In the georelational data model implemented for
VPF, two topological operations are paramount: boundary and
coboundary. For example, an edge has a start node and an end
node; the nodes are the boundary for the edge. The edge, in turn,
is the coboundary of the node. Of course, the coboundary of a
node can have more than one edge if many edges meet at a node.
Similarly, faces have edges as boundaries. The coboundaries of
edges are maintained in the left and right faces.

A.4.1.3. Topological yules. The integrity rules of the

topological model are contained in the definition of the objects
themselves. A plane model restricts itself to planar geometry,
where all entities must lie in the same plane. In addition, all
faces must be mutually exclusive and not overlapping. These
constraints allow the objects to be defined in context and allow
operations to be performed in a consistent manner. While these
rules may seem to restrict the system model, they define the data
model's domain, taking advantage of the underlying structures. By
restricting the faces to be constructed of nonoverlapping regions,
powerful set operations can be applied to the objects (such as
union, intersection, or join).

A.4.1.4. The VPF georelational data model. VPF uses a

combination of the relational and the planar topologic data models
to provide a hybrid model for geographic data management,
analysis, modeling, and display. The georelational model provides
the data structure foundations for a spatial database, and
software provides the rules and operators that manipulate
topology, geometry, and relational objects in the form of tables.
Whenever an operation requires thematic information, the use of
relational and topologic table operations are used to supply the
result. If the operation is spatially related, geometry and
topology together will be used. This triad of categories

113

MIL-STD-2407

APPENDIX B
WINGED-EDGE TOPOLOGY
B.1. GENERAL

B.1.1 Scope. This appendix provides information,
discussion, and examples concerning winged-edge topology. The
information contained in this standard shall be used by the
Military Departments, Office of the Secretary of Defense,
Organizations of the Joint Chiefs of Staff and the Defense
Agencies of the Department of Defense (collectively known as DoD
Components) in preparing and accessing digital geographic data
required or specified to be in vector product format.

B.2. APPLICABLE DOCUMENTS
This section is not applicable to this appendix.

B.3. DEFINITIONS

B.3.1 Definpitions used in this appendix. For purposes of

this appendix, the definitions of section 3 of the main document
shall apply.

B.4. GENERAL INFORMATION

B.4.1 Winged-edge topology. Winged-edge topology is an
essential part of the VPF data model. The function of winged-edge
topology is to provide line network and face topology and also to
maintain seamless coverages across a physical partition of tiles.
The following sections define the components of winged-edge
topology, the algorithm used to traverse the winged-edge network,
and cross-tile topology.

B.4.2 Compopnents of a winged edge. Winged-edge topology
uses three specific components (columns) on an edge primitive
table to provide connectivity between nodes, edges, and faces.
Given level 1, 2, or 3 topology, the edge primitive will contain
specific columns for each topologic level. As shown by FIGURE 28,
there are three topologic constructs: node, edge, and face
information on each edge. These constructs are formally defined
in section 5.3. A brief summary of the definition is repeated
below. :

a. Node information. Each edge will contain a start node

and an end node column. This topologic information is
used to define an edge direction (digitizing direction).

115

MIL-STD-2407

APPENDIX B
b. Edge information. Right and left edges connect an edge
to its neighbor edges (thus the term *winged edge"). The

right edge is the first edge connected to the end node
that is encountered when cycling arocund the node in a
counterclockwise direction. The left edge is the first
edge connected to the start node that is encountered when
cycling around the node in a counterclockwise direction.

I
L J Left Face

Left Edg
e

Ri ¢
G Node “ohe Edge
Right Face ® N
J @ Node

Edge
——>» Counterclockwise Rotation

FIGURE 28. Winged-edge components.

c. Face information. With level 3 topology specified, each
edge will contain a left and right face. Left and right
face are determined solely by the edge direction. This
information allows an edge to know its neighboring faces.

B.4.2.1 Inner rings. The composition of a face's outer and
inner rings are governed by the rules of winged-edge topology. 1In
addition, since edges are never considered inside a face but,
rather, borders of faces, floating edges within a face will be
treated as inner rings. FIGURES 29, 30 and 31 illustrate some
cases of outer and inner rings.

116

MIL-STD-2407
APPENDIX B

Note: There is no inner ring.

FIGURE 29. Face 5 is represented as a single ring in the ring
Lable.
Note: The two inner faces and their
connected edge compose a single inner
ring and are identified by a single
ring in the ring table.
FIGURE 30. Face 5 is represented as two rings in the ring table.

117

MIL-STD-2407
APPENDIX B

Note: The second ring in the ring
table identifies the floating edge
within the face.

FIGURE 31. Face 5 is represented as two rings in the ring table.

B.4.3 Winged-edge algorithm. Given the definition of a
winged edge, every coverage containing faces and edges is created
in the same way. With the enforcement of a planar topologic

model, a consistent navigation algorithm can be applied.

FIGURE 32 depicts a collection of faces and accompanying edges.
To navigate a face, the following algorithm is used:

a. Determine which face to draw. Determining which face to
draw would typically be driven by the selection of area
features that have the attributes desired; then key
through the face and ring tables associated with the
area.

An example of an area feature table consistent with
FIGURE 32 is shown in TABLE 62.

118

MIL-STD-2407
APPENDIX B

LEGEND
2 Face
¢ ® Node
1 Edge
D START_NODE END_NODE RIGHT_FACE LEFT_FACE RIGHT_EDGE LEFT_EDGE Cc:ordinates
1 D E 2 1 2 6
2 E F 2 1 3 1 Not
3 F G 2 1 4 2 Shown
4 H G 1 2 3 5
5 H D 2 3 1 12
6 D C 1 3 7 5
7 C B 1 3 8 6
8 B A 1 3 9 7
9 A L 1 3 10 8
10 K L 3 1 9 11
11 K J 1 3 12 10
12 J H 1 3 4 11
13 I I 4 1 13 13
FIGURE 32. Winged-edge example, with drawing completelv contained
thi 1c 95,
TABLE 64. Sample arec feature table for FIGURE 32.
ID TILE_ID FAC_ID <attribute 1>...< >
436 95 3 1.

119

»

d.

MIL-STD-2407

APPENDIX B

TABLE 64 identifies tile 95 with face 3 as the primitive
corresponding to area feature 436. The face table for
tile 95 for FIGURE 32 (TABLE 65) yields the following:

TABLE 65. Sample face table for FIGURE 32.

ID *.AFPT_ID RING_PTR

3 436 7

The ring table for FIGURE 32 (TABLE 66) yields the
following:

TABLE 66. Sample ring table for FIGURE 32. -

1D FACE_ID START_EDGE

Now identify the start edge (in this case, 12).

Travel to the left edge to trace the left face; the right
edge for the right face. Because face 3 is the left face
of edge 12, read the left edge record (edge 11). Edge 11
leads to edge 10, edge 10 to edge