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Abstract.  Users of high-resolution global gravita-
tional models require geographically specific esti-
mates of the error associated with various gravita-
tional functionals (e.g., Δg, N, ξ, η ) computed from
the model parameters. These estimates are composed
of the commission and the omission error implied by
the specific model. Rigorous computation of the
commission error implied by any model requires the
complete error covariance matrix of its estimated
parameters. Given this matrix, one can compute the
commission error of various model-derived function-
als, using covariance propagation. The error covari-
ance matrix of a spherical harmonic model complete
to degree and order 2160 has dimension ~4.7 million.
Because the computation of such a matrix is beyond
the existing computing technology, an alternative
method is presented here which is capable of pro-
ducing geographically specific estimates of a model’s
commission error, without the need to form, invert,
and propagate such large matrices. The method pre-
sented here uses integral formulas and requires as
input the error variances of the gravity anomaly data
that are used in the development of the gravitational
model.
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1 The Main Idea

Geopotential models like EGM96 are composite
solutions. A low degree comprehensive solution
(e.g., Nmax=70 for EGM96) employing complete
normal matrices and least-squares adjustment tech-
niques combines the satellite-only information with
surface gravity and satellite altimetry data. The
higher degree and order part of the model (e.g., from
n=71 to 360 for EGM96) is determined solely from a
complete, global grid of Δg .

Beyond the maximum degree and order of the
available satellite-only solution, there is little need to
form complete normal matrices, since no “adjust-
ment” takes place within this degree range. The
merged (terrestrial plus altimetry-derived) Δg  are

the only data whose signal and error content deter-
mine the model’s signal and error properties in this
degree range. This fact enables high-degree error
propagation, with geographic specificity, through the
use of integral formulas with band-limited kernels,
without the need to form, invert, and propagate ex-
tremely large matrices.

2 An Example Illustrating the Principle

The gravity anomaly computed from a composite
model is (L and H stand for Low- and High-degree):

Δ̂g = Δ̂gL + Δ̂gH = Δ̂gn
n=2

L

∑ + Δ̂gn
n=L+1

H

∑   .                 (1)

The corresponding geoid undulation is:

N̂ = N̂L + N̂H = N̂n
n=2

L

∑ + N̂n
n=L+1

H

∑   ,                        (2)

and can be written as (Heiskanen and Moritz, 1967):

N̂ = R
4πγ

Δ̂gS(ψ )dσ
σ
∫∫   ,  S(ψ ) = 2n +1

n −1
Pn (t)

n=2

H

∑    (3)

where t = cos(ψ ) . We define:

SL (ψ ) =
2n +1
n −1

Pn (t)
n=2

L

∑  , SH (ψ ) =
2n +1
n −1

Pn (t)
n=L+1

H

∑  (4)

Wong and Gore (1969) used a similar separation of
harmonic components to modify Stokes’ kernel in
the context of truncation theory. Equations (2), (3),
and (4) and the orthogonality of spherical harmonics
imply that:

N̂ = R
4πγ

(Δ̂gL + Δ̂gH )[SL (ψ )+ SH (ψ )]dσ ⇒
σ
∫∫

N̂ = R
4πγ

Δ̂gLSL (ψ )dσ
σ
∫∫ + R

4πγ
Δ̂gHSH (ψ )dσ

σ
∫∫ . (5)

Therefore, a strict, degree-wise separation of spec-
tral components can be achieved by restricting the
spectral content of the kernel function accordingly,
as long as the integration is performed globally. The
band-limited version of Stokes’ equation:

N̂H = R
4πγ

Δ̂gH SH (ψ )dσ
σ
∫∫                 (6)

implies, for uncorrelated errors of Δ̂gH , the error
propagation formulas:



σ 2 (N̂H ) =
R
4πγ

⎛
⎝⎜

⎞
⎠⎟

2

σ 2 (Δ̂gH )SH
2 (ψ )dσ (7a)

σ
∫∫

σ12 (N̂H ) =
R
4πγ

⎛
⎝⎜

⎞
⎠⎟

2

σ 2 (Δ̂gH )SH (ψ 1)SH (ψ 2 )dσ (7b)
σ
∫∫

Discretized versions of equations (7a, b) allow the
computation of σ 2 (N̂H )  and σ12 (N̂H )  from σ 2 (Δ̂gH )
through global convolutions. We implement (7a)
using 1D FFT (Haagmans et al., 1993), with H cov-
ering the degree range where the merged (terrestrial
plus altimetry-derived) Δg  define solely the solu-
tion. The geoid error covariances from equation (7b)
are also computed using global convolution, al-
though with much less efficiency compared to the
computation of error variances for points on regular
grids. This approach is applicable to any functional
related to Δg  by an integral formula. Equations (7a,
b) employ the spherical approximation, which we
consider adequate for error propagation work. Apart
from this, (7a, b) are rigorous, and their numerical
implementation is only subject to discretization er-
rors. Finally, the band limiting of integration kernels
removes the singularity at the origin of kernels like
Stokes’ and Vening Meinesz’s, therefore the inner-
most zone effects require no special treatment.

If we assume that the error correlation between
ˆ Δ gL  and ˆ Δ gH  is negligible due to orthogonality, then

the total error variance of a field functional, f , at
the geographic location (R,ϕ ,λ) , as computed from
a specific geopotential model, can be written as:
σ f
2 (R,ϕ,λ) ≈ σ f

2 (R,ϕ,λ)_ commission_ L
+σ f

2 (R,ϕ,λ)_ commission_H
+σ f

2 (R,ϕ,λ)_omission
               (8)

where σ f
2 (R,ϕ,λ)_ commission_ L  is computed by

propagation of the complete error covariance matrix
of the comprehensive solution employing 2D FFT
(Haagmans and Van Gelderen, 1991) (see Figure 1
for EGM96), σ f

2 (R,ϕ,λ)_ commission_H  is com-
puted by global convolution based on an integral
formula, and σ f

2 (R,ϕ,λ)_omission  may be estimated
using local covariance models. This approach cir-
cumvents the need to form, invert, and propagate
extremely large matrices.

3 Functional Relations

We present the functional relations between gravity
anomalies and other gravity field functionals of in-
terest. From these relations, the corresponding error
propagation formulas can be derived, in exactly the
same fashion as with equations (6) and (7).

Gravity Anomaly ( Δg ): To propagate gravity
anomaly errors we use Poisson’s integral (Heiskanen
and Moritz, 1967):

Δgp =
1
4π

ΔgD(ψ ,r)dσ
σ
∫∫

D(ψ ,r) = R2

r
r2 − R2

l3
− 1
r
− 3R
r2
t

⎛
⎝⎜

⎞
⎠⎟

DN1
N2 (ψ ,r) = (2n +1) R

r
⎛
⎝⎜

⎞
⎠⎟
n+1

Pn (t)
n=N1

N2

∑   .                     (9)

When r = R , this kernel can be computed by:

DN1
N2 (ψ ) = (2n +1)Pn (t)

n=N1

N2

∑ =

(N2 +1)(PN2 − PN2+1)− N1(PN1−1 − PN1 )
(1− t)

t ≠ 0

(N2 +1)
2 − N1

2 t = 0

⎧

⎨
⎪

⎩
⎪

         (10)

The kernel (10) has interesting filtering properties
(see also Jekeli, 1981). As N2 →∞  this kernel be-
comes the spherical equivalent of the Dirac delta
function. As long as the convolution with this kernel
is global (as is the case in our application), the result
is an ideal filtering (apart from discretization errors)
of the function convolved with this kernel, since the
eigenvalues of this operator are:

λn =
1 N1 ≤ n ≤ N2
0 otherwise

⎧
⎨
⎩

                  (11)

This property allows us to extract from a given set of
σ 2 (Δg)  the portion of the error variance that corre-
sponds to a given degree range N1,N2[ ] , which en-
ables the computation of σ 2 (Δ̂gH ) .
Geoid Undulation (N ): The band-limited version of
Stokes’ kernel has the series form:

SN1
N2 (ψ ,r) = (2n +1)

(n −1)
R
r

⎛
⎝⎜

⎞
⎠⎟
n+1

Pn (t)
n=N1

N2

∑   .                   (12)

Gravity Disturbance (δg ): We use the integral:

δgp = − R
4π

Δg ∂S(ψ ,r)
∂r

dσ
σ
∫∫   ,

whose kernel is given by:
∂S(ψ ,r)

∂r
= − R(r

2 − R2 )
rl3

− 4R
rl

− R
r2

+ 6Rl
r3

+

R2

r3
t(13+ 6 ln r − Rt + l

2r
) , l = r2 + R2 − 2rRt( )1 2

which can be written in series form as:

R
∂SN1

N2

∂r
(ψ ,r) = (2n +1)(n +1)

(n −1)
R
r

⎛
⎝⎜

⎞
⎠⎟
n+2

Pn (t)
n=N1

N2

∑   .    (13)

N-S and E-W Deflections of the Vertical (ξ,η ): We
use the Vening Meinesz integral formula:



ξ
η
⎧
⎨
⎩

⎫
⎬
⎭p

= 1
4πγ

Δg ∂S(ψ ,r)
∂ψ

cosα
sinα

⎧
⎨
⎩

⎫
⎬
⎭
dσ

σ
∫∫

whose kernel is:
∂S(ψ ,r)
∂ψ

= sinψ ×

− 2R
2r
l3

− 6R
2

rl
+ 8R

2

r2
+ 3R

2

r2
r − Rt − l
l sin2ψ

+ ln r − Rt + l
2r

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

and takes the series form:
∂SN1

N2

∂ψ
(ψ ,r) = (2n +1)

(n −1)
R
r

⎛
⎝⎜

⎞
⎠⎟
n+1 ∂Pn (t)

∂ψn=N1

N2

∑    .             (14)

4 Verification

First we verified that the computation of functionals
using global convolution (equations like (6)) gives
results that agree with those computed using har-
monic synthesis, over the same degree range. Geoid
undulations computed from EGM96 via harmonic
synthesis, for the degree range (n=71 to 360), are
shown in Figure 2. Their RMS value is ±1.01 m.
The difference between these values and those com-
puted via convolution (using 30´ cells) has an RMS
value of ±4 mm (Figure 3). This indicates a level of
agreement between the two methods that we con-
sider more than adequate for error propagation work.
The discrepancies between the two estimates are af-
fected primarily by the cell size used in the convo-
lution approach (discretization error), becoming ex-
ceedingly small for 5´ cells.

We also verified that error propagation based on
global convolutions gives results that agree well
with those computed using rigorous error covariance
matrix propagation (linear algebra). Obviously, this
can only be done for relatively low degree expan-
sions, where the sizes of the matrices involved allow
the rigorous approach to be implemented. To this
end we used the 1°x1° terrestrial (i.e., no altimetry)
Δg  standard deviations used in the development of
EGM96, and computed propagated errors for N , in
two ways. First through rigorous covariance matrix
propagation (Figure 4), and second based on a
global convolution (Figure 5). In both cases the de-
gree range was n=2 to 90. The first method takes 90
minutes of execution time, while the second takes 15
seconds. The computation was done on a SunFire
v480 server with four 1.2GHz Ultra SPARC III
processors. Percentage wise, the maximum differ-
ence between the two estimates is ~14%, while the
RMS difference is ~3.6%.

Finally, Figures 6 and 7 present 5′x5′ commission
error maps for the deflections of the vertical, com-
puted from PGM2004A to degree 2159 (Pavlis et al.,

this issue). These figures demonstrate clearly that our
technique produces propagated errors that preserve
the geographic variations of the σ 2 (Δg)  values used
in the development of the model with a high degree
of fidelity. Step discontinuities and certain areas with
minimal geographic variation of the propagated er-
rors (e.g., Antarctica) reflect certain shortcomings of
the σ 2 (Δg)  values assigned to the gravity data. A
corresponding map for geoid undulations is shown in
(Pavlis et al., ibid.), together with comparisons of the
propagated errors versus the observed performance
of PGM2004A, as obtained from independent data
tests. It takes about 36 minutes of execution time to
compute a global 5′x5′ error map, with the method
presented here, on the same Sun server.

5 Summary

We have developed and verified a method for error
propagation with geographic specificity, from very
high degree spherical harmonic gravitational mod-
els. This approach is very efficient and yields results
that are accurate enough to be useful. The approach
uses global convolutions with band-limited kernels
to isolate and compute the error contribution of the
harmonics beyond the maximum degree of the com-
prehensive solution. These developments open up
new possibilities for the application of optimal Δg
weighting by degree (or degree range), Δg  error
calibration using locally available independent data,
and permit the examination of the implications of
Δg  weights by region.
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Fig. 1  Geoid commission error for EGM96 (n=2 to 70) from its full error covariance matrix.  RMS = ±0.18 m.

Fig. 2  30´x30´ synthetic geoid undulations from EGM96 (n=71 to 360).  RMS = ±1.01 m.

Fig. 3  30´x30´ geoid undulation differences: [synthetic Δg (n=2 to 360)]*[Stokes’ kernel (n=71 to 360)] minus
the synthetic undulations of Figure 2.  RMS = ±0.004 m.



Fig. 4  1°x1° geoid undulation commission error computed by propagating the full error covariance matrix.
RMS = ±1.64 m.

Fig. 5  1°x1° geoid undulation commission error computed using Stokes’ integral formula.  RMS = ±1.69 m.



Fig. 6  5´x5´ ξ  commission error (arc seconds) computed from PGM2004A (n=2 to 2159) using convolution
(Vening Meinesz’s formula).  RMS = ±1.047˝.

Fig. 7  5´x5´ η  commission error (arc seconds) computed from PGM2004A (n=2 to 2159) using convolution
(Vening Meinesz’s formula).  RMS = ±1.057˝.


