3. WGS 84 ELLIPSOID

3.1 General

In geodetic applications, three different surfaces or earth
figures are normally involved. In addition to the earth's natural or
physical surface, these include a geometric or mathematical reference
surface, the ellipsoid, and an equipotential surface called the geoid
(Chapter 6). In determining the WGS 84 Ellipsoid and associated para-
meters, the WGS 84 Development Committee, in keeping with DMA guidance,
decided quite early to closely adhere to the thoughts and approach used
by the International Union of Geodesy and Geophysics (IUGG) when the
latter established and adopted Geodetic Reference System 1980 (GRS 80)
[3.1]. Accordingly, a geocentric equipotential ellipsoid of revolution
was taken as the form for the WGS 84 E1lipsoid. The parameters selected
to define the WGS 84 Ellipsoid are the semimajor axis (a), the earth's
gravitational constant (GM), the normalized second degree zonal
gravitational coefficient ( Cé,o ), and the angular velocity (w) of the
earth (Table 3.1). These parameters are identical to those for the GRS 80
E1lipsoid with one minor exception. The coefficient form used for the
second degree zonal is that of the WGS 84 Earth Gravitational Model rather
than the notation J, used with GRS 80. Accuracy estimates (one sigma) are
also given in Table 3.1 for the defining parameters. Cited references
treating GRS 80 have been borrowed from freely in preparing this Chapter.

3.2 The Equipotential Ellipsoid

An equipotential ellipsoid, or level ellipsoid, is an ellipsoid
defined to be an equipotential surface. If an ellipsoid of revolution
(with semimajor axis a and semiminor axis b) is given, then it can be made
an equipotential surface

U = U0 = Constant

of a certain potential function U, called the normal (theoretical) gravity



potential. This function is uniquely determined by means of the ellipsoid
surface (semiaxes a, b), the enclosed mass (M), and the angular velocity
(w), according to a theorem of Stokes-Poincare, quite independently of the
internal density distribution. Instead of the four constants, a, b, M,
and w , any other system of four independent parameters may be used as
defining constants. However, as noted in Section 3.1, above, the defining
parameters of the WGS 84 Ellipsoid are the semimajor axis (a), the earth's
gravitational constant (GM), the earth's angular velocity (w), and the
normalized second degree zonal harmonic coefficient (Té,o) of the gravita-
tional potential. With this choice of parameters, the equipotential
ellipsoid furnishes a simple, consistent, and uniform reference system for
all purposes of geodesy - the ellipsoid as a reference surface for
geometric use (mapping, charting, etc.) , and a normal (theoretical)
gravity field at the earth's surface and in space, defined in terms of
closed formulas, as a reference for gravimetry and satellite geodesy.

The standard theory of the equipotential ellipsoid regards the
normal (theoretical) gravitational potential as a harmonic function
outside the ellipsoid, which implies the absence of an atmosphere. Thus,
the computations are based on the theory of an equipotential ellipsoid
without an atmosphere. The reference ellipsoid is defined to enclose the
whole mass of the earth, including the atmosphere. As a visualization,
the atmosphere can be considered to be condensed as a surface layer on the
ellipsoid. The normal (theoretical) gravity field at the earth's surface
and in space can therefore be computed without any need for considering
the variation of atmospheric density.

If atmospheric effects must be considered, this can be done by
applying corrections to the measured values. This is the standard pro-
cedure in the case of the effect of atmospheric refraction on angle and
electronic distance measurements. A similar procedure is used for gravity
data, where atmospheric corrections are applied to measured values of
gravity. A table of atmospheric corrections for gravity measurements was



included as an integral part of the report on GRS 80 [3.1]. A similar
table pertaining to WGS 84 is included in Chapter 4. Due to the impor-
tance of this application, additional details are also given in [3.2].

It 1is important to note that defining the reference ellipsoid
(the WGS 84 Ellipsoid) to enclose the mass of the earth, including the
atmosphere, differs from the definition adopted for previous WGS
Ellipsoids. (The WGS 72 and earlier WGS Ellipsoids did not include the
mass of the atmosphere.) This change in definition affects theoretical

gravity and must be considered in the calculation of gravity anomalies.
More discussion on this topic will occur later in this Chapter, as well as
in Chapter 4.

3.3 Defining Parameters

3.3.1 Semimajor Axis (a)

The value adopted for the semimajor axis (a) of the WGS 84
Ellipsoid, a defining parameter, and its one-sigma accuracy estimate are:

a = (6378137 +2) meters.

This a-value, which is the same as that for the GRS 80 Ellipsoid, is two
meters (m) larger than the value of 6378135 m adopted for the WGS 72
E1lipsoid [3.3]. As stated in [3.4], the GRS 80 (and thus the WGS 84)
a-value 1is based on estimates from the 1976-1979 time period, determined
using laser, Doppler, radar altimeter, laser plus radar altimeter, and
Doppler plus radar altimeter data/techniques. These efforts yielded
values from 6378134.5 m to 6378140 m. The best estimate was considered to
lie between 6378135 m and 6378140 m, with a representative value being

a = (6378137 + 2) m.

For comparison purposes, Table 3.2 contains the semimajor axis and
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ellipticity (flattening) of the WGS 84 Ellipsoid and other well-known
reference ellipsoids.

Since 1979, estimates of the semimajor axis have been made
using satellite radar altimeter data, satellite laser ranging data, and
Doppler satellite data. Results from these determinations, summarized in
[3.5], range from 6378134.9 to 6378137.0 meters. Therefore, a = 6378137
meters and oy = t2 meters are good choices for the semimajor axis of the
WGS 84 ETllipsoid and its accuracy.

Two viewpoints exist with respect to the accuracy of the
semimajor axis of the WGS 84 Ellipsoid {(or any ellipsoid). From one
perspective, the WGS 84 Ellipsoid is a mathematical figure adopted for the
earth, and since it 1is an adopted figure having a selected (adopted)
a-value, the assignment of an accuracy to "a" is not required and should
not be done. However, when attempting to adopt a geocentric ellipsoid
that best fits the figure (mean sea level surface) of the earth, an ac-
curacy value for the semimajor axis has merit since it is a measure of how
well such a fit has been accomplished. It is in this context that oy = +2
meters is stated for the semimajor axis of the WGS 84 Ellipsoid, and that
is its primary, if not sole, use. For example, 9y should not be used in
any error analysis treating the accuracy of WGS 84 geodetic latitude and
geodetic longitude values determined from WGS 84 rectangular (X,Y,Z)

coordinates.,

3.3.2 Earth's Gravitational Constant (GM)

3.3.2.1 GM (With Earth's Atmosphere Included)

The value of the earth's gravitational constant
adopted as one of the four defining parameters of the WGS 84 E£E1l1ipsoid and
its one-sigma accuracy estimate are:

8 3

GM = (3986005 +0.6) x 108m3s~2 .




This value includes the mass of the atmosphere and is based on several
types of space measurements. These measurement types and the associated
estimates for GM are [3.1]:

Spacecraft radio tracking......... e (3986005.0 + 0.5) «x 108m3s‘2
Lunar Taser data analySiS...eo... ceeeeen (3986004.6 + 0.3) x 108m3s'2
Satellite laser range measurementsS...... (3986004.4 + 0.2) x 10%1135'2

From these results, a representative value for GM is

8 3

(3986004.7 + 0.3) x 10%m3s72

GM

or, when rounded

8 3

GM = (3986005 + 0.6) x 10" m”s"

2

Although more recent estimates of GM [3.6]
provide a representative value of

8 3

GM = 3986004.4 x 10%m3s72

it is not sufficiently different from the internationally adopted GRS 80
value for GM to warrant its adoption for use with WGS 84.

3.3.2.2 GM, of the Earth's Atmosphere

3.3.2.2.1 Calculated as a Product of G and MA

For some applications, it is necessary
to either have a GM value for the earth which does not include the mass of
the earth's atmosphere, or have a GM value for the earth's atmosphere
itself. For this, it is necessary to know both the mass of the earth's
atmosphere, MA , and the universal gravitational constant, G.




The values of G and MA adopted for
WGS 72, as well as recent International Association of Geodesy (IAG) and
International Astronomical Union (IAU) recommended values for these
parameters, are listed in Table 3.3. Using the value recommended for G
[3.7] by the IAG, and the more recent value for My [3.8], the
product GMA to two significant digits is

6M, = (3.5 & 0.03) x 108m3¢™

2
which is the value currently recommended by the IAG for this product
[3.7].

This product is necessary to obtain a
value for GM that excludes the mass of the earth's atmosphere, given a GM
value that includes it (Section 3.3.2.1). This value of GMA, with a more
conservative accuracy value assigned, was adopted for use with WGS 84;

i.e.:
GMp = (3.5 £ 0.1) x 108m3s-2 (3-2)

3.3.2.2.2 Implied by Atmospheric Correction to

Gravity Values

As alluded to earlier, an atmospheric
correction to observed gravity (g) is required for gravity anomaly ( ag )
determination when theoretical gravity ( y ) in the equation

Ag = g - Y + gravity reduction terms (3-3)

is for an ellipsoid that includes the mass of the earth's atmosphere, as
is the case with the WGS 84 Ellipsoid. A value for GMp 1s implied by the
corresponding atmospheric correction that must be applied to observed
gravity in this situation.



A method for determining the GMA value
implied by a given set of atmospheric corrections to gravity is to compare
theoretical gravity values determined from a GM that includes the mass of
the earth's atmosphere with theoretical gravity values determined from a
GM that excludes the mass of the atmosphere. This was done for the three

quantities 7, Tas Yo where

P

%Y = average value of theoretical gravity
AR A L2 aly s 3%, 57 4 2371 6, 259 4
6 3 360 18 15120 1080
+ 270229 e8 + 9623 e6k) (3-4)
1814400 45360
Yo © theoretical gravity at the equator
elql
=B gm0 (3-5)
ab 6 9%
Yp = theoretical gravity at the poles
eIql
A (3-6)
a2 3 9%

and e2 e‘2, Kk, my qg, qo' are derived constants for which equations will

be given later in this Chapter. Comparisons were made between values of
Yo Yoo Yy and Y, Yg, YP
using values of GMy ranging from

' were computed

, respectively, where Y', Yé, Y

M. = 3.5 x 10%m3s72  to G, = 3.6 x 108m3s 72,

A




The results are shown in Table 3.4. It is noted that a GMA value of

8 3

= 3.54 x 10%m3s~2

GMA
produces a difference of approximately 0.87 milligal (mgal) in theoretical

gravity.

An alternative approach for deter-
mining which value of GM, is implied by the atmospheric corrections to
observed gravity, is to solve for GM,, utilizing the above equations
for Yo and Yp in the form:

e'q)
_ m 0
GM = abye /(1 -m - 3'_5;_) (3-7)
_ .2 m elqé
GM = a Yp / (1 +-3-——a;)-) (3"8)

Replacing y_ and y_ in Equations (3-7) and (3-8), rspectively, by the
e p

atmospheric correction of 0.87 mgal, the derived values for GM, are:

GM, = 3.546 x 105”2
GM, = 3.527 x 10°m7s72,
Thus, it is seen that a GM, value of
approximately
6M, = 3.54 x 10%n3s7?

is implied by the atmospheric correction to observed gravity. The
preceding value, when rounded to two significant digits, is

8 3.-2

GM, = 3.5 x 10°m”s™“ ,

A
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which agrees with (is) the value of GM, adopted for use with WGS 84,
Equation (3-2). These results illustrate the consistency that exists
between the various WGS 84 parameters, correction terms, etc.

3.3.2.3 GM With Earth's Atmosphere Excluded (GM')

The earth's gravitational constant, with the mass
of the earth's atmosphere excluded (GM'), was obtained by subtracting GMp »
Equation (3-2), from GM, Equation (3-1); i.e.:

GM' = (3986005 x 108m3s-2) - (3.5 x 108m3s-2)

GM' = (3986001.5 + 0.6) x 108m3s-2 (3-9)

The fact that the WGS 84 value for GM', Equation (3-9), is given to one
more digit than the WGS 84 value for GM, Equation (3-1), does not imply
that GM' is known more accurately than GM. The additional digit used with
GM' only reflects a desire to maintain consistency between the various
WGS 84 parameters and correction terms. In fact, GM' 1is known less well,
due to the uncertainty introduced via GMp. The lack of a more realistic
accuracy value for GMp, prevents acknowledgment of this in the above one-
sigma accuracy estimate for GM'.

3.3.3 Normalized Second Degree Zonal Gravitational Coefficient

Another defining parameter of the WGS 84 Ellipsoid is the
normalized second degree zonal gravitational coefficient, Cé 0 which has

the following value and assigned accuracy (one sigma):

Ué 0° (-484.16685 + 0.00130) x 10_6. (3-10)
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This E% 0 value was obtained from the adopted GRS 80 value for Js [3.1],
(J2=J2’0),

J, = 108263 x 1078 (3-11)

by using the mathematical relationship

- 1/2
Ty g = ~0p/(5) (3-12)

and truncating the result to eight significant digits.

The GRS 80 value for J, is representative of the second
degree zonal gravitational coefficient of several earth gravitational
model (EGM) solutions. These EGMs and their respective J2 values are
listed 1in Table 3.5. Since earth gravitational models are usually

expressed in Cn m'-gn n form, the second degree =zonal gravitational

coefficient is expressed as fé 0 (as well as J2) in Table 3.5.

In keeping with the GRS 80 value for J,, the Cé’o value
for the WGS 84 El1lipsoid also does not include the permanent tidal defor-
mation. This effect, usually represented by 6J2, is due to the attraction
of the earth by the sun and moon. It has the magnitude [3.5]:

8J -9

9.3 x 10 (3-13)

2
or, equivalently

: -9
&CZ,O -4.16 x 10 ~. (3-14)

This quantity would be added to'Cé 0 Equation (3-10), if it were
desired to have Cé 0 include the permanent tidal deformation.

The question of whether to include the permanent tidal
deformation is discussed in some detail in the Appendix to [3.4]. In that



discussion, it is stated that:

"Neither J2 nor the geoid as determined in
geodesy should contain the permanent tidal
deformation unless explicitly stated otherwise."

The reason is that Stokes' formula presupposes the gravitational potential
to be everywhere harmonic outside the earth. However, this does not hold
true for the tidal potential, which is not everywhere harmonic, because it
has a singularity at infinity.

3.3.4 Angular Velocity of the Earth

The value of w used as one of the defining parameters of
the WGS 84 (and GRS 80) Ellipsoid and its accuracy estimate (one sigma)
are:

w = 7292115 +0.1500 x 10”11

radians/second. (3-15)

This value, for a standard earth rotating with a constant angular velo-
city, is an IAG adopted value for the true angular velocity of the earth
which fluctuates with time. However, for most geodetic applications which
require angular velocity, these fluctuations do not have to be considered.

Although suitable for use with a standard earth and the
WGS 84 Ellipsoid, it is the IAU version of this value (w')

11

w' = 7292115.1467 x 10" radians/second, (3-16)

that is consistent with the new definition of time [3.17]. This value was
derived in [3.18] using the formula

v _ 2m s + 86400 - u/1500 _




where

s = 31556925.9747
L= pcos e - 12.473" sinle (3-18)
o = 5025.64"

= 23°27'08.26" = 84428.26".

[y]
i

Inserting these values for p and e in Equation (3-17), the resultant
equation is, to 12 significant digits,

' 2'"

o' = grrerogoggnaT = 7292115.14667 X 10”1

radians/second

or, when rounded:

11

' = 7292115.1467 x 10" radians/second. (3-19)

€
"

Historically, by virtue of the values used in the calculation, w is also
consistent with the System of Astronomical Constants adopted by the IAU in
1964 [3.18].

For precise satellite applications, the IAU value of the
earth's angular velocity ( w' ), rather than w, should be used in the
formula

W = w +m (3-20)

to obtain the angular velocity of the earth in a precessing reference
frame ( w* ). In the above equation [3.9] [3.17]:

m = new precession rate in right ascension

3-12




m= (7.086 x 10712 + 4.3 x 10'15TU) radians/second
(3-21)

Ty = Julian Centuries from Epoch J2000.0

Ty = dy/36525

dy = Number of days of Universal Time (UT) from Julian
Date (JD) 2451545.0 UT1, taking on values of + 0.5,
t 1.5, + 2.5,...

dU = JD - 2451545.

Therefore, the angular velocity of the earth in a pre-
cessing reference frame, applicable for precise satellite applications,
may be written:

w* = (7292115.1467 x 10711 + 7.086 x 10712
+ 4,3 x 10'15 TU) radians/second
or
Wt = (7292115.8553 x 10”1 + 4.3 x 10715 T,) radians/second

(3-22)

As stated earlier, the earth's angular velocity fluctuates
with time. This fluctuation is rather significant, as is apparent from
Table 3.6 and Figure 3.1, which show the high, low, and yearly average
values of the earth's angular velocity for years 1967 through 1985.
During this time span, the lowest and highest angular velocities (averaged
over a five-day period) were:

7292114.832 x 10'11 radians/second

w (Towest)

11

7292115.099 x 107"~ radians/second.

w (highest)
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This data was taken from the Annual Reports of the BIH [3.19].

The angular velocity values adopted for WGS 72 and WGS 84
are also shown in Figure 3.1. Note that the w value adopted for use with
the WGS 84 ETllipsoid (Equation 3-15) agrees more closely with recent
values of w than does the value adopted for use with the WGS 72 Ellipsoid.

3.4 Derived Geometric and Physical Constants

3.4.1 General

Many parameters associated with the WGS 84 Ellipsoid,
other than the four defining parameters (Table 3.1), are needed for geode-
tic and gravimetric applications. Using the four defining parameters, it
is possible to derive these associated constants. The more commonly used
geometric and physical constants associated with the WGS 84 Ellipsoid, and
the formulas used in their derivation, are presented here for user
convenience and information. Unless otherwise indicated, the formulas
used in the calculation of the constants are from [3.1] and [3.18].

3.4.2 Fundamental Derived Constant

The fundamental derived constant is the square of the
first eccentricity, e2, normally defined by the equation

e =20 | (3-23)

where

semimajor axis of the ellipsoid

o
1]

semiminor axis of the ellipsoid.

The basic equation which relates e of the WGS 84 Eltipsoid to the four
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defining parameters (a, GM, Cé g» and w ) is

e? =3 (sMH T, 4 %B-Eéai ?gg (3-24)
where

2q, = [1+ Z%Z] arctan (e') --%. (3-25)

e' = second eccentricity

e =e (1-e2)12 (3-26)

Equation (3-24) is solved iteratively for e2.

3.4.3 Derived Geometric Constants

Having the four defining parameters and knowing e2, it is
possible to determine the other geometric constants for the WGS 84
E1lipsoid.

3.4.3.1 Semiminor Axis

The semiminor axis b is defined by the Equation

a (1 -e4)1/2 (3-27)

o
n

or by

o
"

a (1-f) (3-28)

where f is the flattening (ellipticity) of the ellipsoid.
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3.4.3.2 Flattening
The formula for the flattening in terms of el is

F=1-0 -2

1}
—

(3-29)

A more familiar formula for f 1is the one expressed in terms of the
semiaxes a and b:

_a-b
f = T - (3-30)

3.4.3.3 Linear Eccentricity

Linear eccentricity, E, can be determined using
either the formula

E = (a2 - p%)1/2 (3-31)
or

E = ae . (3-32)

3.4.3.4 Polar Radius of Curvature

The equation for the polar radius of curvature,

c, is
a2
C =g (3-33)

Expressed in terms of a and ez, this equation becomes
c=all- e2)'1/2. (3-34)

(Note that ¢ is also used in Section 3.4.5. and Table 3.9 to denote the
velocity of light in a vacuum.)

3-16




3.4.3.5 Meridian Arc Distances

The 1length of the meridian arc from the equator
to the pole (meridian quadrant), Q, can be determined using the equation

/2

d¢ (3-35)

O
1]
O

where ¢ is the geodetic latitude. This integral can be evaluated by the
series expansion

Q=cl[1-3e2445 o4 175,46, 11025 .8 _ 43659 10 ,
2 4 64 256 16384 65536

(3-36)

Knowing the meridian quadrant, Q, the pole to pole meridian arc distance
is 2Q. The total meridian distance around the earth is 4Q. It is
important to remember that meridian arc distances will vary from ellipsoid
to ellipsoid, as a function of ¢ and e', Equation (3-36).

3.4.3.6 Circumference of the Equator

The circumference of the equator, C, of the
WGS 84 E1lipsoid (or any other ellipsoid of revolution) is

C=2m . - (3-37)

(Note that C is also used in Section 3.4.6 and in Tables 3.10, 3.11, and
3.12 to denote the moment of inertia of the earth with respect to the

Z-axis.)
3.4.3.7 Mean Radius

There are several methods for determining a value
for the mean radius of the ellipsoid. First, there is the arithmetic mean
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(R1) of the three semiaxes (a, a, b):

Ry =22t boa 0 (3-38)
When expressed in terms of a and e2, Equation (3-38) becomes
Ry =5 a2+ (1-ed)/2y, (3-39)

Second, the radius of a sphere (R,) having the
same surface area as the WGS 84 Ellipsoid is:

/2
Ry =c [ f cost o del*/? (3-40)
0 (1 + e'" cos"¢)
_ 2 .2 26 .4 100 .6 7034 .8
Rp=c (l-ge'“+qpe” -pgge” +gype
220852 10, ) (3-a1)
An alternative formula for R2 is [3.20]:
2
1 1-c¢ 1+ e,1/2
Ry =5 a (2 +=——— wm3—2)"'". (3-42)

A third method for determining the mean radius of
the WGS 84 Ellipsoid is to find the radius of a sphere having the same
volume as the ellipsoid. The equation for this radius, R3, is [3.20]:

Ry = (a%0)13 =2 (1 - )V, (3-43)

3.4.3.8 Surface Area and Volume of the WGS 84 Ellipsoid

Occasionally, it is necessary to know either the
surface area of the reference ellipsoid or its volume. The surface area S
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of the reference ellipsoid can be calculated directly from the semimajor
axis (a) and eccentricity (e) using the closed form Equation [3.20]:

2
_ 2 l-e 1+e
S=ma" (2+ =— &n ITE')' (3-44)

The surface area can also be calculated from R, using the expression
- 2
S=4n R2 . (3-45)

The mathematical expression for the volume (V) of
the reference ellipsoid, in terms of a and e, is

vV = %-n S (l-ez)l/2 . (3-46)
An alternative method for determining V is the equation
V = %’- " Rg . (3-47)

3.4.3.9 Other Derived Geometric Constants

There are a few other derived geometric constants
which sometimes appear in a listing of ellipsoid constants, or which are
used in other equations. These constants, defined by their equations,
are:

2 2 2
' a- -b e
m' = = (3-48)
a2 + Bzi 2 - ejZ
v _a -b _ f
n' = —ap = (3-49)
1 1 ]
q =3 (1+ ;T?J(l - =, arctan e') -1 (3-50)
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3.4.3.10 Numerical Results

Using the preceding formulation, numerical
values were computed for the above discussed geometric constants
associated with the WGS 84 Ellipsoid. These values are 1listed in
Table 3.7. For ease of reference, the four defining parameters of the
WGS 84 E1lipsoid are also included in the table.

The defining parameters are considered to be
exact. On the other hand, the derived geometric constants are as stated-
derived. Users are reminded that the derived geometric constants cannot
be arbitrarily truncated if consistency between the magnitudes of the
various parameters is to be maintained. These constants should always be
calculated to, and used with, the number of digits required to maintain
the consistency needed for each specific application.

3.4.4 Derived Physical Constants

Having the four defining parameters and knowing the first
eccentricity (e), it 1is possible to determine various physical constants
for the WGS 84 Ellipsoid.

3.4.4.1 Theoretical (Normal) Potential of the WGS 84
E1lipsoid

As was stated earlier, the WGS 84 Ellipsoid is
defined to be an equipotential ellipsoid, a surface of constant theoreti-
cal gravity potential, U = U,. This constant, U,, the theoretical gravity
potential of an ellipsoid, is defined by the expression

_ GM ' 1 2.2
U0 = —E-arctan (e') + 5 wa (3-51)
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o 2N
_ GM - ne 1
U, = [1 +nzl(—1) =1 t 3 M (3-52)

where
GM = earth's gravitational constant
E = linear eccentricity
e’ = second eccentricity
= earth's angular velocity
= semimajor axis
semiminor axis
= Lab/aM. (3-53)

3 O o g
i

3.4.4.2 Zonal Gravitational (Spherical Harmonic)

Coefficients

The zonal gravitational coefficients, Jj, Jg,
Jgs+++, are constants which appear in the spherical harmonic expansion for
the theoretical (normal) gravitational potential (V'):

1 _ GM < a\zn s 1
vi= 1 - g Jon(F) T Py (sin ¢')] (3-54)
n=1
where
r = radius vector
¢'= geocentric latitude.

The theoretical gravitational potential (V') represents the theoretical
gravity potential (U) minus the potential of centrifugal force (of the
earth's rotation).

The coefficient JZ for WGS 84 is calculated from

Cé o using Equation (3-12)

3-21




)2
3= - 1T, (3-55)

The general equation for the other coefficients expressed in terms of Jj
is

n+l 3e

2n JZJ
n+ n+

(1 -n+5n (3-56)
4

Jo, = (-1)

Using this equation, the zonal harmonic coefficients through n = 5 are:

ne2, g =3 (-1+10 Jz) (3-57)
I N Z
e6 JZ
n =3, J6=12-1-(-2+15;2-) (3-58)
e8 JZ
n =4, J8=—-3-3-(-3+20?J (3-59)
10 J

2) .

0" (- 4 + 25 - (3-60)
e

If the normalized 'Ch 0 coefficients are desired, they can either be
calculated from the J, coefficients using the mathematical relationship

T o= - d/(n+1)}/2 (3-61)

n,0

or they can be calculated directly from fé 0 using an expression analogous
to Equation (3-56):

2n T
T - (_l)n 3e 172(1 - - 53/2n Z’OJ

(2n+1)(2n+3)(4n+1) e

(3-62)

Equation (3-62) was derived from Equations (3-55), (3-56), and (3-61).



3.4.4.3 Theoretical Gravity at the Equator and the Poles

Theoretical gravity at the equator, Yer and
theoretical gravity at the poles, y_., can be calculated using the

p
expressions
Mg _p-m ——'q"') (3-63)
Ye = 3b 54,
_ GM m €9
a 0
where
q.' = 3(1 + 1 M1 - ! arctan e') -1 (3-65)
0 ;TZ e’
_1 3 ) 3
Q9 = ?-[(1 + ;TZ) arctan e' - E"]' (3-66)

3.4.4.4 Gravity Flattening

The expression for the constant f*, called
gravity flattening, is

=L = (3-67)

3.4.4.5 Mean Value of Theoretical Gravity

The general expression for the average or mean
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value of theoretical gravity ( Y ) on (at) the surface of the ellipsoid

is:

/2 /2
d
Y CO0S¢ d¢ > / f

Y =
0 (1 - e2 sin2¢) 0 (1 -e

cos¢ d¢ (3-68)
Z sin2¢{2

Transforming Equation (3-68) using series expansions [3.2], it becomes

- _ 1 2 1 59 4 5 2
Y'Yetl""-ge +3'k+3-6-0-e +-1-8-e K (3‘69)

2371 e6 + 259 e4 270229 e8 + 9623 e6k)

* 15170 1080 € K * 1817400 T5360
where
by - ay
Kk =P € (3-70)
aYe

3.4.4.6 Mass of the Earth

The mass of the earth (M), or mass of the WGS 84
E1lipsoid, can be determined from the earth's gravitational constant (GM),
provided a value for the universal constant of gravitation (G) is known.

The appropriate equation is

- GM
M= - (3-71)

The value of G adopted for use with WGS 84 is [3.7]:

11 m3 -2 -1 )

G = 6.673 x 10~ s " kg
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More information on G is available in Section 3.3.2.2.1 and Table 3.3.

3.4.4.7 Numerical Results

Using the preceding formulation, numerical
values were computed for the above discussed physical constants associated
with the WGS 84 Ellipsoid. These values are listed in Table 3.8. For
ease of reference, the four defining parameters of the WGS 84 Ellipsoid
are also included in the table.

3.4.5 Relevant Miscellaneous Constants/Conversion Factors

In addition to the four defining parameters of the WGS 84
E1lipsoid (Table 3.1), necessary for describing (representing) the ellip-
soid geometrically and gravimetrically, and the derived sets of commonly
used geometric and physical constants associated with the WGS 84 El1lipsoid
(Tables 3.7 and 3.8), two other important constants are an integral part
of the definition of WGS 84. These constants are the velocity of 1light
(c) and the dynamical ellipticity (H).

3.4.5.1 Velocity of Light

The currently accepted value for the velocity of
light in a vacuum (c) is [3.21]:

¢ = (299792458 + 1.2) m s~1 .

This value is officially recognized by both the IAG [3.7] and IAU [3.9],
and has been adopted for use with WGS 84.

3.4.5.2 Dynamical Ellipticity

The dynamical ellipticity, H, is necessary for
determining the principal moments of inertia of the earth, A, B, and C.
In the 1literature, H is variously referred to as dynamical ellipticity,
mechanical ellipticity, or precessional constant. It is a factor in the
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theoretical value of the rate of precession of the equinoxes, which is
well known from observation. In a recent IAG report on fundamental
geodetic constants [3.5], the following value for the reciprocal of H was
given in the discussion of moments of inertia:

1/H = 305.4413 + 0.0005 .

For consistency, this value has been adopted for use with WGS 84.

3.4.5.3 Numerical Values

Values of the velocity of light in a vacuum and
the dynamical ellipticity adopted for use with WGS 84 are 1listed in
Table 3.9 along with other WGS 84 associated constants used in special
applications; e.g., the earth's principal moments of inertia
(Section 3.4.6.2 and Table 3.12, dynamic solution). Factors for effecting
a conversion between meters, feet, and/or nautical and statute miles are
also given in the table.

3.4.6 Moments of Inertia

The moments of inertia of the earth with respect to the X,
Y, Z axes are defined by the Equations [3.22]

A= ] (v?+ 7' %)am (3-72)
earth '

B =) J (2% + x'?)am (3-73)
earth

C=f / (x2+y'2)m (3-74)
earth

where

A = moment of inertia with respect to the X axis
= moment of inertia with respect to the Y axis
C = moment of inertia with respect to the Z axis
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X', Y', Z' = rectangular coordinates of the variable mass element dM.

The moments of inertia are related to the second degree
gravitational coefficients J, 5 and J2,2 by the formulas [3.23]

1 A+B
Jz’o “F (C‘TJ (3—75)
a
]
Jo o = (A - B) (3-76)
2,2 mal

where

semimajor axis of the ellipsoid
mass of the earth.

= o
1t

It is possible to determine A, B, and C either geometri-
cally, using only the defining parameters (a, GM, té,O’ w) of an ellip-
soid, or dynamically, using earth gravitational model coefficients. Both
approaches are used here to determine the moments of inertia. Although
normalized gravitational coefficients are usually wused for most
applications, it is easier to express the equations for the moments of
inertia in terms of conventional (unnormalized) coefficients, either Jn,m
or Cn,m' Therefore, gravitational coefficients in conventional form are
used in the following development. (However, equations expressed in terms
of normalized coefficients are introduced at the end.)

3.4.6.1 Geometric Solution

In the geometric solution, the moments of
inertia are calculated from the defining parameters of an ellipsoid, which

for WGS 84 are a, GM,"C'2 0’ and w. Due to the symmetry of the rotational
ellipsoid,

A = B, (3-77)

so that Equations (3-75) and (3-76) reduce to
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J = (C - A) (3-78)
2,0 7 2
J2,2 = 0 (3-79)

where

C = moment of inertia with respect to the axis of
rotation (Z - axis)
A = moment of inertia with respect to any axis in the

equatorial plane.

Thus, in the geometric solution, there are only two moments of inertia to
be solved for, A and C.

The geometric solution for C is [3.23]:

-2 y.2 2 (5m 1/2
¢ =2wmlr1-23F- 0l (3-80)

or

E%Z-=%[1 LS NG (3-81)
where, as before:

m =i2§;3 | (3-82)

f = ellipsoidal flattening

w = earth's angular velocity

b = semiminor axis

GM = earth's gravitational constant.
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Knowing M, a, C, and Jo 0 Equation (3-78) can be used to obtain A, i.e.:

- 2
A =C - Ma JZ,O (3-83)
or
A C
= -J . (3-84)
MaZ Mal 250
Moments of inertia are often given in terms of their
differences

C-A,C-B,orB-A
rather than in terms of their individual values (A, B, and C). In the
geometric solution, due to Equation (3-77), there is only one difference
to be concerned with:

C-A.

This difference is readily obtained from Equation (3-78), which yields

- M2l
C -A=Ma J2,0 (3-85)
or
C-A
= * (3-86)
ﬁ;? 2,0

Although the dynamical ellipticity (H) 1is more
accurately determined using other techniques, as was discussed in Section
3.4.5.2, it can also be solved for geometrically from A and C, using the
equation [3.22]:

H = ——-C——- . (3"‘87)




3.4.6.2 Dynamic Solution

Discussion of the dynamic solution for the
moments of inertia also starts with Equations (3-75) and (3-76):

I | A+B
J2,O = ;E;Z (c - 'TF') (3-88)
Jp 5 = — (A-B8). (3-89)
’ 4Ma
These equations can be rewritten as:
_ 1 A+8B
CZ’O - W (—2-—— - CJ (3"90)
C, ,=—L (B -A) (3-91)
2,2 gya?
where
Cn,m = - Jn,m . (3-92)

It is assumed that the C2 0 and C
from an earth gravitational model that is referenced to the same reference

2,2 (or J2,0 and J2’2) coefficients are
ellipsoid as that used for the geometric solution.

Solving Equations . (3-90) and (3-91)
simultaneously for the moment of inertia differences, (C-A, C-B, B-A):

— = - (Cz,o - 2c2’2J (3-93)
C-8 .- _(c, .+2C,,) (3-94)
Maz 2,0 2,2

B - A _

_agg_ = 4c2’2 (3-95)



or

C - A=-Mal(c, 5 -2, ,) (3-96)

C-8=-M(C, 5+ 2C,,) (3-97)
Y

B -A=4Ma (:2,2 . (3-98)

If a value is known for the moment of inertia C,
then A and B can be obtained from Equations (3-90) and (3-91). Although
it is possible to determine C using the geometric solution, Equation (3-
80), subsequent values obtained for A and B will differ significantly from
the various values published for these constants, e.g., [3.5]. An
alternative approach is to determine C from the dynamical ellipticity (H),
Section 3.4.5.2. The mathematical relationship between C and H is:

c
e (3-99)
Ma
or C
260
C= - Ml 20 (3-100)

Inserting Equation (3-100) into Equations (3-96)
and (3-97), the expressions obtained for A and B are:

2

>
n

C + Ma - 2C

(€5 ¢ 2.2)

2 1

A =Mt [C, o(1-q) - 2L, ] (3-101)
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_ 2
B=C+Ma (CZ’O + 262,2)
il 1
B = Ma” [C, 0(1 - H) +2C, ,] (3-102)
or
A=c . (1-1)-2 (3-103)
vl 20 T 2,2
B_-¢ (1 - 1) + 2C (3-104)
val 2,0 il 2,2°

Since earth gravitational model coefficients are
usually given in normalized form, it is convenient to also have the
equations for the moments of inertia expressed in terms of normalized
coefficients (fé’o and té,z)' The mathematical relationships between
the conventional and normalized coefficients are:

1 N
T2,0 7 <17z C2,0 * ~ T72 2,0 (3-105)
T, - 2(%)1/2(:2’2 - . 2(%)1/%2,2 : (3-106)

For convenience, the equations for calculating
the moments of inertia are given in Tables 3.10 and 3.11, respectively,
for both conventional and normalized gravitational coefficients.

3.4.6.3 Numerical Results

Numerical values are given in Table 3.12 for all
the moment of inertia parameters. The geometrically determined
parameters, considered to be less accurate than those determined from a
dynamic solution, are included for comparison purposes only. For
information and convenience, several of the constants needed for
calculating moment of inertia parameters are also included in the table.
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3.4.7 Geocentric Radius and Radii of Curvature

It is often helpful to have equations readily available
for the geocentric radius (to the surface of the ellipsoid), the radius of
curvature 1in the meridian, and the radius of curvature in the prime
vertical (Figure 3.2). The equations for these parameters are [3.24]:

a(l - ez)l/2
r = 177 (3-107)
(1 - e“cos“¢")
2
_ a(l - e%)
" = (1 - ezsin2¢)3/2 (3-108)
R, = a (3-109)

(1 - e251n2¢)1/2

where

r = geocentric radius to the surface of the ellipsoid

RM = radius of curvature in the meridian
Ry = radius of curvature in the prime vertical

a = semimajor axis
e = first eccentricity
= geocentric latitude
= geodetic latitude.

and the mathematical relationship between the geocentric and geodetic
latitudes is [3.201]:

¢' = arctan [(1 - ez) tan ¢] . (3-110)
The above equations have been used to compute values of r,
Ry» and Ry at 1° intervals of geodetic latitude from 0° to 90° for the

WGS 84 Ellipsoid. These quantities are given in [3.25].
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3.4.8 Ellipsoidal Arc Distances

For user convenience, formulas and numerical values are
given for arc distances along meridians and parallels of the WGS 84
Ellipsoid. These arcs are depicted in Figure 3.2.

3.4.8.1 Meridian Arc Distance

Meridian arc distance, S¢ , for a small
increment of latitude A¢ (less than 45 kilometers in Tlength), can be
calculated using the equation [3.20]:

S¢ = Ryho (3-111)
where, as before:
Ry = radius of curvature in the meridian
2
a(l-e)
R = (3-112)
M
a = semimajor axis of the ellipsoid
e = first eccentricity of the ellipsoid
¢ =

geodetic latitude.

3.4.8.2 Arc Distance Along a Parallel of Latitude

Arc distance along a parallel of latitude, Sy s
for an increment of longitude AX at latitude ¢ , can be calculated using
the equation [3.20]:
cos ¢ AX (3-113)

Sy = RN
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where

= radijus of curvature in the prime vertical

=
=
I

_ d
Ry = 77 - (3-114)

(1—e251n2¢)

3.4.8.3 Numerical Values

Meridian arc distances, S¢, corresponding to one arc
second in latitude ( A¢ = 1") were calculated at latitude intervals of 5° from
0° to 90° for the WGS 84 Ellipsoid using Equation (3-111). Similarly, arc
distances along a parallel of Tlatitude, SA , corresponding to one arc second
in longitude ( ax = 1") were calculated at latitude intervals of 5° from 0° to
90° using Equation (3-113). These S¢ and S, values, provided in [3.25], are
the number of meters in one arc second of geodetic latitude and geodetic
longitude, respectively, on the WGS 84 Ellipsoid. The increase in S¢ with
geodetic latitude reflects the effect of the flattening of the ellipsoid. The
decrease in S, with geodetic latitude reflects the effect of the convergence

of the meridians towards the poles.

3.5 Summary/Comments

The defining parameters of the WGS 84 Ellipsoid are the same as those
of the internationally sanctioned GRS 80 E1lipsoid with one minor exception.
To maintain consistency with the coefficient form used with the WGS 84 EGM,
the defining parameter J, of the GRS 80 E1lipsoid, given to six significant
digits in [3.1], was converted to 'Cé’o , truncated to eight significant
digits, and used with WGS 84. As such, this converted value ( Cé’o ) is a
defining parameter of the WGS 84 Ellipsoid and the second degree zonal
coefficient of the WGS 84 EGM (Chapter 5).

The four defining parameters ( a, t&,O’ w, GM ) of the WGS 84
E11ipsoid were used to calculate the more commonly used geometric and physical
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constants associated with the WGS 84 Ellipsoid. As a result of the use of
Cé’o in the form described, the derived WGS 84 Ellipsoid parameters are
slightly different from their GRS 80 Ellipsoid counterparts. Although these
minute parameter differences and the conversion of the GRS 80 Jp-value to Eé 0
are insignificant from a practical standpoint, it has been more appropriate éo
refer to the ellipsoid used with WGS 84 as the WGS 84 Ellipsoid.

In contrast, since NAD 83 does not have an associated EGM, the J2 to
Cé’o conversion does not arise and the ellipsoid used with NAD 83 by NGS is
in name and in both defined and derived parameters the GRS 80 Ellipsoid.
Although it is important to know that these small undesirable inconsistencies
exist between the WGS 84 and GRS 80 Ellipsoids, from a practical application
standpoint the parameter differences are insignificant. This 1is especially
true with respect to the defining parameters. Therefore, as 1long as the
preceding is recognized, it can be stated that WGS 84 and NAD 83 are based on
the same ellipsoid.

With continuing research, new values will become available for the
ellipsoid defining parameters discussed above. Although there is often a
temptation to replace an existing parameter with a new ("improved") value when
the latter appears, this should not be done with WGS 84. It is technically
inappropriate to use such an "improved" value in the context of WGS 84 since
the defining and derived parameters of the WGS 84 Ellipsoid form an internally
consistent set of parameters. Since replacement of any of the defining
parameters by an “improved" value has an effect on the derived parameters,
disturbing this consistency, organizations involved in a DoD application that
may require a WGS 84-related parameter of better accuracy than that presented
in this Chapter should not substitute an "improved" barameter value but make
the requirement known to the address provided in the PREFACE.

It is anticipated that at some point in the future, DMA will need to
address the time varying nature of Cé’o and w [3.26]1 [3.27], the inclusion of
additional significant digits in both, and the possible need for an improved
GM (WGS 84 scale) for high altitude satellite applications. The international
geodetic community can assist in this endeavor by keeping these possible
improvements in mind in any future update (replacement) of GRS 80.

3-36




3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

REFERENCES

Moritz, H.; "Geodetic Reference System 1980"; Bulletin Geodesique;
Vol. 54, No. 3; Paris, France; 1980.

Dimitrijevich, I.J.; WGS 84 Ellipsoidal Gravity Formula and Gravity
Anomaly Conversion FEquations; PamphTlet;, Department of Defense

Gravity Services Branch; Defense Mapping Agency Aerospace Center;
St. Louis, Missouri; 1 August 1987.

Seppelin, T.0.; Department of Defense World Geodetic System 1972;
Technical Paper; Headquarters, DUetense Mapping Agency; Washington,
DC; May 1974.

Moritz H.; "Fundamental Geodetic Constants"; Report of Special Study
Group No. 5.39 of the International Association of Geodesy (IAG);
XVII General Assembly of the International Union of Geodesy and
Geophysics (IUGG); Canberra, Australia; December 1979.

Rapp, R.H.; "Fundamental Geodetic Constants"; Report of Special
Study Group No. 5.39 of the International Association of Geodesy
(IAG); XVIII General Assembly of the International Union of Geodesy
and Geophysics (IUGG); Hamburg, Federal Republic of Germany; August
1983.

LAGEOS Orbit Determination; Smith, D.E. and D. C. Christodoulidis

{NASA/GSFC); Dunn, P.J.; Klosko, S.M.; and M. H. Torrence
(EG&G/Washington Analytical Services Center); and S. K. Fricke (RMS,
Incorporated); 1986. [Paper Presented at the Spring Annual Meeting
of the American Geophysical Union; Baltimore, Maryland; 20 May
1986. ]

International Association of Geodesy; "The Geodesist's Handbook
1984"; Bulletin Geodesique; Vol. 58, No. 3; Paris, France; 1984.

Moritz, H., "Fundamental Geodetic Constants"; Report of Special
Study Group No. 5.39 of the International Association of Geodesy
(IAG); XVI General Assembly of the International Union of Geodesy
and Geophysics (IUGG); Grenoble, France; August-September 1975.

Kaplan, G.H.; The IAU Resolutions on Astronomical Constants, Time
Scales, and the Fundamental Reference Fframe; United States Naval

Observatory Circular No. 163; United States Naval Observatory;
Washington, DC; 10 December 1981.

Reigber, C.; Balmino, G.; Muller, H.; Bosch, W.; and B. Moynot;
"GRIM Gravity Model Improvement Using LAGEQS (GRIM3-L1)"; Journal of
Geophysical Research; Vol. 90, No. Bll; 30 September 1985.

3-37




11

.12

.13

.14

.15

.16

.17

.18

.19

.20

REFERENCES (Cont'd)

Reigber, C.; Muller, H.; Rizos, C.; Bosch, W.; Balmino, G.; and B.
Moyot; "An Improved GRIM 3 Earth Gravity Model (GRIM3B)";
Proceedings of the International Association of Geodesy (IAG)
Symposia, Vol. 1; International Union of Geodesy and Geophysics

VIII General Assembly; Hamburg, Federal Republic of Germany
(15-27 August 1983); Department of Geodetic Science and Surveying;
The Ohio State University; Columbus, Ohio; 1984,

Marsh, J.G.; Lerch, F.J.; et al. (NASA/GSFC); Klosko, S.M.; Martin,
T.V.; et al. (EG&G Washington Analytical Services Center); and
Patel, G.B.; Bhati, S.; et al. (Science Applications and Research
Corporation); An Improved Model of the Earth's Gravitational Field,
GEM-T1; National Aeronautics and 3Space Administration (NASA);
Goddard Space Flight Center (GSFC); Greenbelt, Maryland; November
1986.

Lerch, F.J.; Klosko, S.M.; Patel, G.B.; and C. A. Wagner; "A Gravity
Model for Crustal Dynamics (GEM-L2)"; Journal of Geophysical
Research; Vol 90, No. B1l; 30 September 1985.

Rapp, R.H.; The Earth's Gravity Field to Degree and Order 180 Using
SEASAT Altimeter Data, Tlerrestrial Gravity Data, and Other Data;
Department of  Geodetic Science and Surveying Report No. 32Z2; The
Ohio State University; Columbus, Ohio; December 1981.

Lerch, F.J.; Putney, B.H.; Wagner,C.A.; and S.M. Klosko; "Goddard
Earth Models for Oceanographic Applications (GEM 10B and 10C)";
Marine Geodesy; Vol. 5, No. 2; Crane, Russak, and Company; New York,
New York; 1981.

Marsh, J.G. and F. J. Lerch; "Precision Geodesy and Geodynamics
Using Starlette Laser Ranging"; Journal of Geophysical Research;
Vol. 90, No. Bll; 30 September 1985.

Aoki, S.; Guinot, B.; Kaptlan, G.H.; Kinoshita, H.; McCarthy, D.D.;
and P. K. Seidelmann; "The New Definition of Universal Time";
Astronomy and Astrophysics; Vol. 105; 1982.

Geodetic Reference System 1967; Special Publication No. 3;
International Association of Geodesy; Paris, France; 1971.

Annual Report for 1980, 1981, 1982, 1983, 1984, 1985; Bureau
Tnternational de 1 Heure; Paris, France; 1981, 1982, 1983, 1984,
July 1985, June 1986, Respectively.

Rapp, R.H.; Geometric Geodesy, Volume 1-Basic Principles; Department
of Geodetic  Science and Surveying; The Ohio State University;
Columbus, Ohio; December 1974.

3-38



.21

.22

.23

.24

.25

.26

.27

REFERENCES (Cont'd)

Price, W.F.; "The New Definition of the Metre"; Survey Review; Vol.
28, No. 219; January 1986.

Heiskanen, W.A. and H. Moritz; Physical Geodesy; W.H. Freeman and
Company; San Francisco, California; 1967.

Torge, W.; Geodesy - An Introduction; Walter de Gruyter and Company;
New York, New York; 1980.

Zakatov, P.S.; A Course in Higher Geodesy; Translated from Russian
and Published for the National Science Foundation, Washington, DC,
by the Israel Program for Scientific Translations; Jerusalem,
Israel; 1962.

Suppliement to Department of Defense World Geodetic System 1984

Technical Report: Part Il - Parameters, Formuias, and Graphics for

the Practical Application of WGS 84; DMA TR 8350.2-B; Headquarters,

Detense Mapping Agency; Washington, DC; 1 December 1987.

Yoder, C.F.; Williams, J.G.; Dickey, J.0.; Schutz, R.E.; Eanes,
R.J.; and B. D. Tapley; "Secular Variation of Earth's Gravitational
Harmonic J, Coefficient From LAGEOS and Non-Tidal Acceleration of
Earth Rotation"; Nature; Vol. 303; 1983.

Dickey, J.0. and T. M. Eubanks; Atmospheric Excitation of the
Earth's Rotation - Progress and Prospects; JPL Geodesy and

Geophysics Preprint No. 149; California Institute of Technology, Jet
Propulsion Laboratory (JPL); Pasadena, California; October 1986.




Table 3.1

Defining Parameters of the WGS 84 Ellipsoid
and Their Accuracy Estimates (1lo)

Parameters

Notation

Value/(Accuracy, lo)

Semimajor Axis

Normalized Second Degree Zonal

Gravitational Coefficient

Angular Velocity of the Earth

Earth's Gravitational Constant

(Mass of Earth's Atmosphere
Included)

2,0

GM

6378137 m
(+2 m)

-484.16685 x 10-6
(£1.30 x 10°9)

7292115 x 10-11 rad s-1
(£0.1500 x 10-11 pad s-1)

3986005 x 108 m3 -2
(£0.6 x 108 m3 s72)
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p-¢

Table 3.2
Reference Ellipsoid Constants

Reference Ellipsoids

a (Meters)

Airy

Modified Airy
Australian National
Bessel 1841
Clarke 1866

6377563.396
6377340.189
6378160
6377397.155*
6378206.4

1/299.3249646
1/299.3249646
1/298.25

1/299.1528128
1/294.9786982

Clarke 1880 6378249.145 1/293.465

Everest 6377276.345 1/300.8017
Modified Everest 6377304.063 1/300.8017

Fischer 1960 (Mercury) 6378166 1/298.3
Modified Fischer 1960 (South Asia) 6378155 1/298.3

Fischer 1968 6378150 1/298.3

Geodetic Reference System 1967 6378160 1/298.247167427

Geodetic Reference System 1980 6378137 1/298.257222101

Helmert 1906 6378200 1/298.3

Hough 6378270 1/297

International 6378388 1/297

Krassovsky 6378245 1/298.3

South American 1969 6378160 1/298.25

WGS 60 6378165 1/298.3

WGS 66 6378145 1/298.25

WGS 72 6378135 1/298.26

WGS 84 6378137 1/298.257223563

* In Namibia, use a = 6377483.865 meters for the Bessel 1841 Ellipsoid.




Table 3.3
Estimated Values for the Universal Gravitational
Constant (G) and Mass of the Earth's Atmosphere (M)

G MA References
6.6720 + 0.0041 5.136 + 0.007 [3.3]
6.672 + 0.0041 5.24 + 0.02 [3.8]
6.672 [3.9]
6.6726 + 0.0005 [3.5]
6.673 + 0.001 [3.7]
6.6745 + 0.0008 [3.4]

[Each tabular entry for G, above, must be multiplied by 10'11m3s‘2kg'1.
Each tabular entry for M,, above, must be multiplied by 1018kg.]
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Table 3.4
Effect of GMy on Theoretical Gravity

Effect of GMy on Theoretical Gravity

GMp Gye o‘yp 5Y

3.50 0.86176 0.86036 0.86127
3.51 0.86422 0.86282 0.86373
3.52 0.86668 0.86528 0.86619
3.53 0.86915 0.86773 0.86865
3.54 0.87161 0.87019 0.87111
3.55 0.87407 0.87265 0.87357
3.56 0.87653 0.87511 0.87604
3.57 0.87899 0.87757 0.87850
3.58 0.88146 0.88002 0.88096
3.59 0.88392 0.88248 0.88342
3.60 0.88638 0.88494 0.88588

[Each GMp tabular value, above, must be multipled by 108m3s‘2.

Ye = theoretical gravity at the equator; Yp = theoretical gravity at the
poles; ¥ = average value of theoretical gravity; all values based on the
WGS 84 ET1lipsoidal Gravity Formula; units = milligals for 6Ye, dvp, 8y tabular
values (above).]




Table 3.5
Comparison of Second Degree Zonal Gravitational Coefficients

fé,o J2 Source/Reference
-484.1605 x 1070 1082.6158 x 1070 WGS 72 [3.3]
-484.16140 x 107 1082.6178 x 1076 GRIM3-L1 [3.10]
-484.16289 x 1070 1082.6211 x 1070 GRIM3B [3.11]
-484.16474 x 1070 1082.6252 x 1070 GEM-T1 [3.12]
-484.16499 x 10-0 1082.6258 x 1070 GEM-).2 [3.13]
-484.1653 x 1070 1082.6265 x 1076 0SU 81 [3.14]
-484.1655 x 1070 1082.6269 x 1075 GEM 9 [3.4]
-484,16551 x 1070 1082.6269 x 1076 GEM 10C [3.15]
-484.16602 x 1070 1082.6281 x 1070 PGS-1331 [3.16]
-484.16685 x 1070 1082.6300 x 10-0 WGS 84 —-
-484.1691 x 1070 1082.6350 x 1070 GRIM 2 [3.4]
-484.1700 x 107° 1082.6370 x 1076 SAO SE III  [3.4]
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Table 3.6
Yearly Angular Velocity Values of the Earth's Rotation

Angular Velocity (Units = 10711 rag s71)
Year Highest* Lowest* Average**
1967 7292115.018 7292114.903 7292114.946
1968 114.999 114.894 114.937
1969 114,989 114.875 114.921
1970 114.998 114.870 114.918
1971 114.953 114.836 114,901
1972 114,946 114.845 114.882
1973 114,952 114.836 114.889
1974 114.982 114.852 114.917
1975 114,991 114,875 114.920
1976 114,961 114.855 114,901
1977 114,993 114.867 114,912
1978 114.995 114,832 114.903
1979 114,997 114.876 114.926
1980 115.018 114.909 114.952
1981 115.052 114,893 114,964
1982 115.031 114.918 114,964
1983 115.034 114.877 114.954
1984 115.096 114.975 115.019
1985 115.099 114.977 115.024

* Averaged over a five-day period.

** Averaged over a year.
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WGS 84 Ellipsoid

Table 3.7

- Defining Parameters and Derived Geometric Constants -

Parameter

Symbo1

Numerical Value

Defining Parameters

Semimajor axis

Earth's gravitational constant

Normalized second degree zonal
gravitational coefficient

Earth's angular velocity

d
aM
T2.0

W

6378137 m
3986005 x 108m3s-2
-484.16685 x 1070

7292115 x 10~1lrad s-!

Derived Geometric Constants

Semiminor axis

Linear eccentricity

Polar radius of curvature
First eccentricity (e) squared

Second eccentricity (e') squared

Flattening (ellipticity)
Reciprocal of the flattening

Axis ratio

Meridian quadrant

Pole-to-pole meridian distance
Total meridian distance
Circumference of the equator

Mean radius of semiaxes

Radius of sphere of same surface*
Radius oﬁ sphere of same volume*
Surface area of ellipsoid

Volume of ellipsoid

m' = (a%-b%)/(a+?)

= (a-b)/(a+b)

= (1/2)[(1+3/e'%)arctan(e’)-3/e

n 1
9%
Qé=3(1+1/e'2)[1—(1/e')arctan e'l-1

b
E
c
el

e
1-e2
(1-e2)1/2

6356752.3142 m
521854.0084 m
6399593.6258 m
.00669437999013
.0818191908426
.993305620010
.996647189335
.00673949674227
.0820944379496
.00335281066474
298.257223563
0.996647189335
10001965.7293 m
20003931.4586 m
40007862.9173 m
40075016.6856 m
6371008.7714 m

O O O O OO o o

'6371007.1809 m

6371000.7900 m

5.10065621724 x 1614 m2
1.08320731980 x 102! m3

0.00335843130272
0.00167922038638
0.0000733462578707
0.00268804130046

* As the WGS 84 Ellipsoid




Table 3.8

WGS 84 Ellipsoid

-Defining Parameters and Derived Physical Constants-

Constant

Symbo1

Numerical Value

Defining Parameters

Semimajor axis

a

Earth's gravitational constant GM

Normalized second degree zonal T
gravitational coefficient

2,0

Earth's angular velocity w

6378137 m
3986005 x 108m3s-2
-484.16685 x 1070

7292115 x 10~1lrad s-1

Derived Physical Constants

Theoretical gravity potential of Uy
ellipsoid
m = «fa’b/GM m
Theoretical gravity at the equator Yo
Theoretical gravity at the poles Yp
Gravity flattening f*
k = (bwrp-aYe)/a\(e k
Mean value of theoretical gravity 7
Mass of the earth (including the M

atmosphere)

62636860.8497 mls—2

0.00344978600313
9.7803267714 m s~2
9.8321863685 m s~2
0.00530244012894
0.00193185138639
9.7976446561 m s~2

 5.9733328 x 1024 kg

Geometrically Derived Gravitational Coefficients

Degree (n) Ch’o I
2 - - - 0.00108262998905
4 0.000000790304054 -0.00000237091216
6 -0.000000001687251 0.00000000608347
8 0.000000000003461 -0.00000000001427
10 -0.000000000000003 0.00000000000001
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Table 3.9
Relevant Miscellaneous Constants
and Conversion Factors

Constant Symbo1 Numerical Value
Velocity of light ¢ 299792458 m 51
(in a vacuum)
Dynamical ellipticity H 1/305.4413
Earth's angular velocity [for w¥ (7292115.8553 x 1011
satellite applications; see -15 -1
Equation (3-22).] + 4.3 x 10 TU) rad s
. . . -11 3 -2, -1
Universal constant of gravitation G 6.673 x 10 “~"m”s “kg
GM of the earth's atmosphere GMp 3.5 x 10%n3s72
Earth's gravitational constant GM' 3986001.5 x 10%m3s~2

(excluding the mass of the
earth's atmosphere)

Earth's principal A 8.0091029 x 1037 kg mg
moments of inertia B 8.0092559 x 1037 kg m
(dynamic solution) C 8.0354872 x 1037 kg m?

Conversion Factors

Meter

Meter
International Foot
US Survey Foot

US Survey Foot

3.28083333333 US Survey Feet
3.28083989501 International Feet
0.3048 Meter (Exact)

1200/3937 Meter (Exact)
0.30480060960 Meter

— et s el s

1852 Meters (Exact)
6076.10333333 US Survey Feet
6076.11548556 International Feet

1 Nautical Mile

1609.344 Meters (Exact)
5280 International Feet (Exact)

1 Statute Mile

Ty = Julian Centuries from Epoch J2000.0
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Table 3.10

Principal Moments of Inertia Equations
- Geometric Solution -

Moment of Equations
Inertia
Parameters |Using Conventional Coefficients | Using Normalized Coefficients
2 _ 1/2
(C_A)/Ma - \]2’0 _5 .C-Z’O
- 2 1/2 .2
C-A =] Ma J2,0 -5 Ma Cé,o
2 .| 2pq _ 2 (5m _ ;172 2rqy _ 2 (5m _ .41/2
2 - 2y _ 2 1/2
A/Ma (C/Ma”) J2,0 (C/Ma®) + 5 Cé’o
¢ =| Znalny - E30 - 02 Za%r1 - 250 - /A
- 2 172 .2
A= C- Ma J2,0 C+5 Ma Cé,o
H=| (C-A)/C (C - A)/C
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Table 3.11

Principal Moments of Inertia Equations
- Dynamic Solution -

Moment of Equations
Inertia
Parameters |Using Conventional Coefficients | Using Normalized Coefficients
(c-my/ma =| (¢, . -2¢c,,) sV o, 3t
2,0 2,2 2,0 2,2
2 _ 1/2 1/2
(C-B)/Ma“ = -((:2,O + 2 C2,2) -5 (1'2’0 + U2’2/3 )
2 . 1/2
(B-A)/Ma“ =} 4 02’2 2(5/3) Cé’z
_ 2 1/2,.2 1/2
C-A =| -Ma (Cz,o -2 02’2) -5 “Ma (1’2’0 - t2’2/3 )
- 2 1/2,,.2 1/2
C-B =| -Ma (CZ,O + 2 C2’2) -5""“Ma (Cé,o +'Cé,2/3 )
- 2 1/2 ,,.2
B-A =] 4 Ma (:2’2 2(5/3) Ma Cé,z
2 - 1/2
C/Ma - -CZ,O/H —5 tz’o/H
2 - 1/2 1/2
A/Ma‘c = (1 - 1/H) C2,0 -2 C2’2 5 [(l-l/H)Ué’O - Cé,2/3 ]
2 - 1/2 1/2
B/Ma¢ =| (1 - 1/H)C2,0 +2C,, 5 [(1-1/H)'C2’0 + ?:2’2/3 ]
- 2 1/2 .2
C - -Ma CZ’O/H —5 Ma UZ,O/H
. 2 1/2,,.2 1/2
A =| Ma“[(1l - 1/H)C 2.0 " 2 02’2] 5" “Ma [(1-1/H)T§2’0 - 'C2’2/3 ]
_ 2 1/2,,.2 1/2
B =] Ma“[(1 - 1/H)02’o + 2 (:2,2] 5 “Ma [(l-l/H)sz,o + C2’2/3 ]
A, B, C = Principal Moments of Inertia
CZ,O’CZ,Z;CQ,O’té,Z = Second Degree Gravitational Coefficients
H = Dynamical El1lipticity
a = Semimajor Axis
M = Earth's Mass
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Table 3.
WGS 84 - Re

12
lated

Moment of Inertia Values

Parameters Geometric Solution Dynamic Solution
Input Data
Ty -484.16685 x 1075 -484.16685 x 1076
Ty --- 2.4395796 x 107
H - 1/305.4413
a 6378137 m 6378137 m
G 6.673 x 10 11m3s~2%g! 6.673 x 10" m3s2kg71
m 0.00344978600313 ——
£ 0.00335281066474 ——
M 5.9733328 x 102%g 5.9733328 x 10%%g
Ma2 2.4299895 x 1038kg m? 2.4299895 x 1038kg m?
Calculated Parameters
(c-A)/Ma® = | 0.0010826300 0.0010857795
(C-B)/Ma® = —— 0.0010794805
(B-A)/Ma? = - 0.0000062989674
C-A = | 2.6307795 x 103%kg m? 2.6384327 x 103%gq m?
C-B = —— 2.6231263 x 10°°kg m?
B-A = - 1.5306425 x 10°3kg m
c/Ma? = | 0.33228868 0.33067991
A/Ma? = 0.33120605 0.32959413
B/Ma® = - 0.32960043
c=| 8.0745801 x 1037kg m? 8.0354872 x 10°’kg m?
A= | 8.0482723 x 10%7kg m? 8.0091029 x 103’kg m?
B = - 8.0092559 x 10°’kg m?
H=| 1/306.92728 -




Angular Velocity (w; Multiply Values by 1 x 10"V rad s~ ])

7292115.15

“WGS 72 =7292115.1467 X 10 — 1Y rad s = 1

729211510 — -
7292115.05 T
1 “WGS 847 i L
7292115.00—-—-—-—,.-—-—T._._._._._._._._.__'._q.
— T i
- - /‘—\
7292114.95— T
. \*\, /\ / 4
7292114.90 . \\ / ™
7292114.85 —
N N 1
7292114.80 LA S S B H S S . A B B B AN B e p
1965 1970 1975 1980 1985
Year
Figure 3.1.  High, Low, and Yearly Average Angular Velocity (w) Values
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r=0op
Ry = 0P
Ry, =0"P

Y

¢' = Geocentric Latitude
¢ = Geodetic Latitude
A = Geodetic Longitude

r = Geocentric Radius S, = Meridional Arc
R,, = Radius of Curvature Distance

- in the Prime Vertical

S, = Arc Distance Along

R,, = Radius of Curvature Parallel of Latitude
M . .
in the Meridian

Figure 3.2.

Geocentric Radius, Radii of Curvature, and Ellipsoidal Arc Distances
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