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ABSTRACT 
 

Using a change of variable suggested by P. D. Thomas (1952), the arclength of a segment of a geodesic 
curve on an ellipsoid becomes an integral having the same form as arclength on an ellipse, a simpler 
problem.  This leads to a succinct theoretical solution to the Direct and Indirect Problems of geodesics.  
With modern mathematical software, it is also a practical solution. 
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On a smooth surface, a geodesic is a curve which is as straight as possible while 
constrained to lie on the surface.  On an ellipsoid of revolution about its minor axis, a 
geodesic is infinite in two directions, in general, as discussed in [2] page 78.  A 
geodesic segment is the portion of a geodesic between two endpoints.  With 
qualifications, it has the property that no shorter path exists that connects its two 
endpoints.  This property may be the main interest about geodesic segments, but the 
theory begins with a pair of integral formulas which stand apart from the shortest-path 
qualifications, provide a basis for calculations, and allow geodesic segments to be 
arbitrarily long.  The integral formulas are of first importance — unwanted long 
solutions can be discarded — and a new formula for geodesic segment length is 
presented here. 
 

REDUCED LATITUDE SOLUTION 
 

   A succinct theoretical statement of the solutions to the Direct and Indirect Problems 
of geodesics, covering all cases, is a desirable item to have in hand before developing 
these problems' numerical and software solutions.    This can be done in more than one 
way.  Using β , the reduced latitude, as the variable of integration, [4], [6] and others 

have:  
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where c is the non-metric Clairaut constant of the geodesic defined by: 

                     βα
φε
φα cossin

sin1
cossin

22
=

−
=c      (3) 

and every point on the geodesic curve has a geodetic longitude λ,  a geodetic latitude  
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φ, a reduced latitude )tan1arctan( 2 φεβ −= , an azimuth α of the forward direction 
measured clockwise from North, and a distance s  (“mile-marker”) along the geodesic 
from some reference point on it.  These notations are also subscripted  “1” and “ 2 ” 
consistently for the two endpoints of the segment of the geodesic.  The eccentricity of 
the ellipsoid is ε  and its semi-major axis is a .  All angles are in radians. 
   Eq. (1) and (2) are correct for the case that 21 ββ <  and the geodesic segment does 
not pass through a "vertex" — defined as a point of extreme latitude on the geodesic, 
i.e. a point where xmaββ ±=  with |)arccos(|max c=β .  Other situations are handled 
by dividing the geodesic segment into subsegments that start or end at a vertex, and 
applying symmetry considerations.  The various cases are illustrated by the following 
representative examples, where ),( 11 βλ  is the first city, ),( 22 βλ is the second city, and 

21,λλ  both lie in the interval ],( ππ−  except where noted.  For the geodesic from New  
 
York to Paris, the integrations would be ∫∫ + max
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true for the geodesic from New York to Tokyo, where also it is noted that 012 <− λλ  
because 0<c  and both cities need to have an East (positive) longitude or both need to 
have a West (negative) longitude.  This is required because Eq. (1) does not recognize 
the equivalence of  180°E with 180°W.  In this article, longitude sits on the real line,  
 
not on the unit circle.  Capetown to Sydney will utilize ∫∫ −−
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south to Montevideo, the short way, is∫ 1
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over both polar regions is ∫∫∫ −−
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East longitude.  It is essential that the integrations be applied to Eq. (1) and (2) 
consistently.  Let geodesics with 0>c  be called prograde, and geodesics with 0<c  
be called retrograde. 
 
   Since )cos( maxβ±=c , the integrals in Eq. (1) and (2) converge but are improper 
when 1β  or 2β  equals maxβ± , or the integration is split to include maxβ±  as 
discussed above.  This causes numerical difficulties, especially when the integral is 
embedded in iterative procedures like those discussed below for the Direct and Indirect 
Problems.  An alternative approach discussed next avoids this difficulty. 

 

LONGITUDE DIFFERENCE INTEGRAL IN P. D. THOMAS 

   On pages 64 - 65 of [5], P. D. Thomas uses the change of variable, θφ sinsin k=  
with 0=θ  at some Equator crossing 0=φ , and with the constant k  defined by: 

                                                22
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 (The Clairaut constant in [5] is ca ⋅  in this article.)  By this transformation, a 
longitude difference integral like Eq. (1) is converted to an Elliptic Integral of the 3rd 
Kind: 
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where c  and k  are given by Eq. (3) and (4) and )/)narcsin((si kii φθ =  for 2,1=i .  
The same caveats as above apply, namely that 21 θθ < , and the geodesic segment does 
not pass through a vertex, now identified as a point where 2/πθ ±= .  Other 
situations are handled exactly like the formulations that used β as the variable of 
integration, now with 2/π  taking the place of maxβ .  For example, New York to Paris 

would employ ∫∫ +
2/2/

21
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.  Note that for 10 << k , the integral is 

never improper. 

COMPANION INTEGRAL FOR GEODESIC ARCLENGTH 

   Just as Eq. (2) is the companion to Eq. (1), so also is the following equation a 
companion to Eq. (5).  It is new here or it deserves to be more widely known: 
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It employs the same caveats and extensions to other situations as adopted for Eq. (5).  
Note that for 10 << k , the integral is never improper. 

   To prove Eq. (6), the integrand in Eq. (2) must be converted from expressions in β  
to expressions in θ .  There are three pieces.  Let the first piece be ββ dcos .  From Eq. 

(3) and the definition of β , we have w/)(coscos φβ = , and 22 /d1d wφεβ −=  

where φε 22 sin1−=w  θε 222 sin1 k−=  is converted as required.  After 
θφ sinsin k=  is differentiated to give θθφφ dcosdcos k= , the  above can be 

combined to give θθε dcos1 23 −− kw  for piece 1.  The second piece is 

βε 22 cos1−  and converts to φε 2221 cos−− ww  21 1 ε−= −w .  The third piece is 
22cos c−β  which can be similarly manipulated to produce 2221 cos wcw −− φ  and 

then  θε 222221 sin)1()1( ckcw −−−− .  Replacing 2k  according to Eq. (4) yields 

)sin1)(1( 221 θ−−− cw  or θcos1 21 cw −−  for piece 3.  Combining pieces 1, 2, and 

3 and the factor a  gives θε d1/)1(d 232 ckwas −−= − .  This is the differential form 

of Eq. (6) after simplifying 21/ ck −  and replacing 3−w .  (In like manner, Eq. (5) 
can be derived from Eq. (1).) 

   Remarkably, Eq. (6) is also the formula for the arclength of a segment of a meridian 
on an ellipsoid of semi-major axis 22

1 1 εcaa −=  and eccentricity εε k=1  between 
geodetic latitude 1L  taken to be the same number as 1θ  and geodetic latitude 2L  taken 
to be 2θ .  For this second ellipsoid, the meridional arclength is 
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LLa εε .  Substituting for 1a , 1ε , 1L , and 2L  and 

simplifying yields Eq. (6).  More than a curiosity, this implies that the literature and 
algorithms for meridional arclength, an easier problem, apply here with the above 
substitutions.  The integral in Eq. (6) is a special case of the Elliptic Integral of the 3rd 
Kind, treated extensively in the literature. 

WHY THETA IS PREFERRED OVER BETA 

   The main purpose of this paper is to (re)introduce Eq. (6) and explain its advantages 
over Eq. (2).  Some advantages have been mentioned — the integral is proper and the 
formula coincides with the oft-studied meridional arclength computation.  Another 
advantage, which Eq. (5) likewise has over Eq. (1), is that the variable θ  can be 

extended in meaning and values to allow the single integral form ∫ 2

1

θ

θ
 to handle all 

geodesic segments of any length.  To introduce this idea, reconsider the integrations 
with respect to θ  for the geodesic from New York to Paris. Then, 

∫∫∫
−

=+ 2

121

2/2/ θπ

θ

π

θ

π

θ
 because the integrands of Eq. (5) and (6) depend on θ  only as 

part of θsin , and θsin  is symmetric with respect to 2/πθ = .  This suggests that the 
value of θ  for Paris should be 2/2 πθπ >−  instead of 2/2 πθ < , i.e. that 2θ  should 
be so redefined. 
 
   Because the variable k  occurs solely as 2k  in Eq. (5) and (6), there is room to 
amend Eq. (4) and give k  a sign.  Let 0>k  if 1α  belongs to the NE or NW quadrants, 
and let 0<k  if 1α  belongs to the SE or SW quadrants.  Then, the  equation by which 
θ  was introduced, namely θφ sinsin k= , is retained, but now the relationship 
between θ  and φ  is many-to-one.  At the initial point, 2/|| 1 πθ ≤  is the rule, and at 
the terminal point, k/)(sinsin 22 φθ =  such that the interval 21 θθθ ≤≤  includes all 

the vertices lying on the geodesic segment.  The integrations are now always ∫ 2

1

θ

θ
 

with 21 θθ < .  The previous examples are reworked as follows, where ),( 11 θλ  is the 
first city, ),( 22 θλ  is the second city, and the previous stipulations about city 
longitudes 1λ  and 2λ  still hold.  For the geodesic segment from New York to Paris, 1α  
belongs to the NE quadrant, 0>k , 2/0 1 πθ << , and πθπ << 22/ .  New York to 
Tokyo has 1α  in the NW quadrant, and again 0>k , 2/0 1 πθ << , and 

πθπ << 22/ .  Capetown to Sydney will have 1α  in the SE quadrant, 0<k , 01 <φ  
yielding 2/0 1 πθ << , and 02 <φ  yielding πθπ << 22/ .  Reykjavik to Montevideo, 
the short way, will have 1α  in the SW quadrant, 0<k , 02/ 1 <<− θπ , and 

2/0 2 πθ << .  Reykjavik to Montevideo, the long way, will have 1α  in the NE 
quadrant, 0>k , 2/0 1 πθ << , and πθπ 22/3 2 << . 
 



AN INTEGRAL FOR GEODESIC LENGTH  

 24

   The set of allowed values of ),( 21 θθ  is independent of the constant c , whereas the 
set of allowed values of ),( 21 ββ  is not.  In particular, the extreme latitudes always 
correspond to 2/πθ ±= .  This allows an assignment of geometric properties to 
parameters such that c  determines the infinite geodesic up to a rotation of the 
ellipsoid, 1θ  and 2θ  identify the finite segment of interest, and 1λ  rotates it into place. 
In a variation of the above theme, let 2/|| 1 πθ ≤  be dropped and 0>k  be adopted as 
requirements.  Then, the members of the quadruple ),,,( 121 λθθc  can be chosen 
independently subject only to 1||0 <≤ c  and 21 θθ < and will exhaust (with 
repetitions) all the possibilities of constructing non-Equatorial geodesic segments.  
Evaluating Eq. (5) and (6) in this way is a methodology for generating test vectors, 

,,,,( 12111 ss −αφλ ),, 222 αφλ , for the Direct and Indirect Problems without first 
developing and debugging the case logic and the iteration logic that these problems' 
solutions require. 

DIRECT  PROBLEM 

   The next purpose of this article is to make the case that Eq. (3) through (6) with 
iteration logic (as needed) can solve the Direct and Indirect Problems of geodesics. 
   In the Direct Problem, ),,,,,( 21111 ssαφλ is given, and ),,( 222 αφλ is to be found.  
As an example, suppose an oceanographic research drone is launched from °−= 721λ , 

°−= 341φ  (near Santiago, Chile) on a geodesic path starting at °−= 1001α  and 01 =s .  
Let the GRS80 ellipsoid be adopted for this exercise, i.e. m6378137=a , 

)2(2 ff −=ε , and  101298.257222/1=f .  Where will it be after km000102 =s of 
travel? 
   Eq. (3) gives 690.81729850−=c , Eq. (4) with sign convention gives 

400.57750716−=k , and the definition of θ  gives °= 275.53201381θ .  (Angles are 
computed in radians, but reported here in degrees).  The quantity 2θ  is the only 
unknown quantity in Eq. (6) and is found by iteration of Eq. (6).  Trial °= 902θ  yields 

km16092 =s , well short of the required 10 000 km.  Therefore, the geodesic will pass 
the point of extreme southern latitude and head northward (at some angle). Trial 

°= 1802θ  produces km 115992 =s , slightly too long.  Linear interpolation produces 
the next trial, and one Newton-Raphson iteration later, we get °= 0165.5689532θ , 
accurate to 710− degrees.  Eq. (5) produces °−=− 495.428228312 λλ  from which 

°−= 3167.4282282λ .  Then, °−= 28.274933372φ  is obtained from 2θ , and 
110.82583978sin 2 −=α  is obtained from Eq. (3).  Approaching the terminal 

endpoint, α  lies in the NW quadrant, so °−= 255.67372482α .  The quantity 2α  is a 
forward azimuth.  The back azimuth °1+ 802α  is often reported instead.  This finishes 
the Direct Problem. 

INDIRECT PROBLEM 

   In the Indirect Problem, ),,,( 2211 φλφλ is given, and ),,( 2112 ααss −  is to be 
found.  As an example, let the initial point be Mumbai (72° E,  19° N for this example) 
and let the terminal point be Los Angeles (119° W, 34° N).   Using the GRS80 
ellipsoid, what is the length of the shortest path between these points, and what are the 
forward directions of travel at the endpoints of this path? 
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   To begin, 2λ  must be changed to °=°+°− 241360119  since the shortest route is the 
prograde (generally eastward) geodesic, and longitude must be continuous.  Although 

1α  is yet to be found, it should lie in the NE quadrant, making 0>k .  With the 
maximum latitude occurring enroute, °> 90θ  will be the case approaching Los 
Angeles.  Therefore at the endpoints, the extraneous solutions for θ  are eliminated in 
favor of )/)narcsin((si 11 kφθ =  and )/)narcsin((si 22 kφπθ −=  where the values of 

xarcsin lie in the interval ]2/,2/[ ππ− . 
 
   In Eq. (5), k  is a function of c , and 1θ  and 2θ are the above functions of k , hence 
functions of c .  In this view, c  is the only unknown in Eq. (5) from which it can be 
found by iteration.  Trial 1.0=c  produces 174.10693373°, larger than the target 

°=− 16912 λλ , and trial 3.0=c  produces 161.47438509°, too small.  Seven iterations 
of a crude secant method, or use of Mathematica's FindRoot routine produces 

13330.18415517=c .  The game is to find c  somehow and the methods of [4] are an 
alternative, with Eq. (5) as the check.  Then, Eq. (4) gives 450.98300877=k , 

°= 819.34135791θ , and °= 8145.3293352θ .  Eq. (6) is now evaluated to get 
m214024777.412 =− ss  for the length of the geodesic segment, and Eq. (3) gives 

°= 311.22703571α  and °= 3167.1794252α .  This finishes the typical Indirect 
Problem. 

SPECIAL CASES 

   Lastly, this article aims to show that Eq. (3) through (6) with an addendum for the 
Equator cover the special cases. 
   In the Indirect Problem, if 021 == φφ  and πλλεπ <−<− ||1 12

2 , the starting 
value for || c  is determined by linear interpolation between 1|| =c  at 

2
12 1|| επλλ −=−  (the "lift-off longitude" given in [3] page 42) and 0|| =c  at 

πλλ =− || 12 .  The starting value for c  takes its sign from 12 λλ − . 
 
   For the meridional case, Eq. (6) is correct as given, with substitutions 0=c , 1=k , 
and φθ =  or substitutions 0=c , 1−=k , and φθ −= .  For fixed 1θ  and 2θ , Eq. (5) 
holds in the limit as +→ 0c  (respectively, −→ 0c ) and simplifies to πλλ n=− 12 , 
for some integer 0≥n  (respectively, some integer 0≤n ).  Neither Eq. (5) nor Eq. (6) 
handles the Equatorial case where 1±=c , 0=k , and θ  is undefined, but this case is 
covered by )( 1212 λλ −⋅=− cass  instead.  The quadrant ambiguity of α  in Eq. (3) is 
usually resolved by inspection, but also provides the Indirect Problem's two solutions 
where that is the case.  This deserves further comment: 
   A solution to the Indirect Problem is a path, as short as possible, that connects the 
two given points.  The number of solutions has to respect the symmetries of the 
ellipsoid and for 0>ε  is either 1, 2, or ∞ .  If it is infinite, the two given points are the 
North and South Poles.  If it is two, 12 φφ −= , and the two paths, portrayed on a φ  
versus λ  plot, will be symmetric to each other through the point given by 

2/)( 21 λλλ += and 0=φ .  Note that the case of nearly antipodal points does not 
receive separate treatment in the methods presented here. 
 
   Some geodesics are closed curves, but most are not.  For a given geodesic, the 
azimuth of every Equator crossing from south to north (respectively, from north to 
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south) is a constant, namely carcsin  (respectively, carcsin−π ).  Therefore, a 
geodesic will retrace itself if it crosses the Equator from south to north a second time at 
the same point.  If 0=c  or 1±=c  or c  has the property that qπλλ 212 =−  for some 
rational number q  when Eq. (5) is evaluated using 01 =θ  and πθ 22 = , then the 
geodesic is a closed curve.  For other values of c , the geodesic winds around the 
ellipsoid forever, never crossing the Equator twice at the exact same point. 

 
IMPLEMENTATION, TESTING, COLLABORATION 

 
   The Direct and Indirect Problem formulations above were implemented in the 
Mathematica programming environment where Elliptic Integrals, 20-digit arithmetic, 
and root-finding routines were available and intelligent enough to overpower any 
numerical difficulties.  Tests were run against calculators available from the National 
Geospatial-Intelligence Agency (NGA) [8], and the National Geodetic Survey [9].  The 
results were in full agreement (to the precision of the other programs) except where the 
other programs were stressed beyond their claims of validity such as in cases of nearly 
antipodal points.  The Mathematica implementation revealed the shortcomings of the 
other calculators. 
   In another vein, this work was part of NGA's participation in the development of  [1].  
In that document,  "closed form" solutions for all coordinate conversions and spatial 
operations are preferred, if such can be obtained.  The equations presented here serve 
that end.  Helpful criticisms of drafts of this article were provided by Ralph M. Toms 
of SRI, International and Paul D. Berner of SEDRIS and some checking with 
Mathematica was provided by Thomas H. Meyer of the University of Connecticut. 
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